Double descent in linear models

Maximilian Kasy

Department of Economics, University of Oxford

Winter 2026



The production function of Al

® How does predictive performance improve as we increase

® the number of observations n,

® the model size d?
e — Empirical scaling laws (e.g. for LLMs).

¢ For example (Hoffmann et al., 2022) (DeepMind),

L(n,d)zé—i— b
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® Prompted "bet of scale” in the industry:

Keep scaling model size (compute) d, even if data size n is bounded.
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Overfitting vs underfitting - the classical picture

’
’

Out of sample/

-------

Prediction Error

In sample

Underfitting Model Complexity Overfitting

2/18



Double descent in neural nets
(Belkin et al., 2019)
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Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n=4- 103, d =784,
K =10 classes). The number of parameters is (d +1)-H+ (H+ 1) - K. The

interpolation threshold (black dashed line) is observed at n - K.
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Conundra

1. Is classical learning theory wrong?
2. |Is deep learning fundamentally different in some fundamental way?

3. Does double descent mean it pays to keep scaling compute without new data?
(A billion dollar question!)
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No!

1. With proper regularization and tuning, there is no double descent.

® e.g. Ridge penalty and tuning using cross validation.

® e.g. (stochastic) gradient descent with early stopping based on test loss.
2. Double descent only happens when “trained to completion.

3. Double descent arises equally for linear regression.

(Bach, 2023)
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Introduction

The normal linear model

Generalization: Reduced bias



Setup

Matrix of regressors: X € R™*¢,
® Vector of outcomes: y € R™.

Vector of coefficients: 5 € RY.

Squared error loss: R(B3) = %HXﬁ —y|*.

(Following (Bach, 2024), Section 12.2)
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OLS regression

® OLS estimator: 9L = argmingR(B).

e Full-rank case (n > d):
BOLS — (X/X)_lX/y.

® Minimum-norm solution for overparameterized case (n < d):

ﬁOLS — X,(XX/)_ly.
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Out of sample prediction error
® Suppose that = ~ N(0, 1), and y|z ~ N(z3*,0?).
® For 3 non-random:
Ellly — x8|%] = Ellly — 257 —28|*] = o + |8 - 8°|1%.
W
R(B)
® Decompose the MSE into expected variance and squared bias given X:

E[R(89%%)|X] = E[| E(3°"°|X) — 8*|]”) + E[Tx(Var(877%|X))].

Bias Variance

® This averages this over the distribution of X.

Random design, not " fixed design”.
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Full-rank case
® |n the full rank case, E[BOLS] = f3*, and thus

E[R(57")|X] = B[Tx(Var(8°°|X))] = o - E[Tr((X'X) ™).

® The matrix X’X has a Wishart distribution with n degrees of freedom.
(https://en.wikipedia.org/wiki/Wishart_distribution).

Since E[X'X] =n -1, E[Tr(X'X))] = d-n, and Tr(E[(X'X)]"") = 4.

® Less obviously, E[Tr((X'X)™1)] = n_fg_y

For intuition, note that the inverse is convex, and recall Jensen’s inequality.

It follows that

E[R(BO")] = o”- # -
N—— —

Variance
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https://en.wikipedia.org/wiki/Wishart_distribution

The over-parameterised case

In the over-parameterised case, 397 = X/(XX")~1y.

This estimator is not unbiased given X.

The variance is given by Var(89F5|X) = 02 - X'(X X")72X, and thus

E[Tr(Var(67%%]X))] = o* B[Tr(X"(XX")72X)] = o B[Te((XX') )]
2 n

T d—n_1

Again: Trace of the expectation of an inverse Wishart distribution,
but with X and X’ switched.
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Bias

As for the bias (given X), we have that fOL% — g* = —P. g*,
where P is the projection P =1 — X/(XX')"'X.

By rotational invariance of the distribution of X,
E[||PB*||%] depends only on ||3*||, and thus

1 1
E[|PI*) = 118117 - 5 Y ElejPPe) = 1587 - S BT (P)].
i

Since P is a projection matrix on an d — n-dimensional subspace,
we have Tr(P) =d — n.

Collecting all our calculations, we get for the overparameterized case that

d
2
e R o

Variance Bias

ER(5O5)] = o

11/18



Putting everything together

E[R(5°%)]

2 d
C =g d<n
o A 4B d>n+ 1
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[[lustration

n =100, ||8*|| = 2, and o2 = 1:
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Generalization: Reduced bias



Generalization: Reduced bias

® Missing from this picture:
The predictive benefit of adding additional informative regressors.

® Equivalently:
o2 should decrease if we choose larger d.
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Subset of regressors

Suppose that W € R™*™ and X is given by the first d columns of .

Suppose w ~ N (0, I,,,), and y|w ~ N (w8, 72).

Partition 0 = (3, y) with dimensions d, m — d.

Then y|lz ~ N(x8,0%), where 02 = ||| + 72.
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Mean square prediction error (MSPE)

* Let MSPE = R(B°L%) 4 o2
® Based on our previous calculations:

(2 +72) - (= +1 d<n

E[MSPE|f)] =
AP +72) (g +1) + B2 52 d>n+1.

® If we assume that § ~ N (0,2 - I), then

E(g1*) =v*-d, Elly]*=v*(m-d).
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Random sketching

® More generally: Power law of coefficients and random sketching.

Modelling device to mimic increasing model size.

e Cf. (Lin et al., 2025).

Assumptions:
* w~ N(0,I,), and ylw ~ N(wd,72). (Possibly m = 00.)
® ;= j—*. (Power law coefficients.)

® =5 W where S € R¥*™ is a random sketching matrix.

Under these conditions: Geometric decline of ||| in d.
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Thank you!
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