
Chapter 1

An Introduction to Recommender
Systems

“Many receive advice, only the wise profit from it.” – Harper Lee

1.1 Introduction

The increasing importance of the Web as a medium for electronic and business transactions
has served as a driving force for the development of recommender systems technology. An
important catalyst in this regard is the ease with which the Web enables users to provide
feedback about their likes or dislikes. For example, consider a scenario of a content provider
such as Netflix. In such cases, users are able to easily provide feedback with a simple click
of a mouse. A typical methodology to provide feedback is in the form of ratings, in which
users select numerical values from a specific evaluation system (e.g., five-star rating system)
that specify their likes and dislikes of various items.

Other forms of feedback are not quite as explicit but are even easier to collect in the
Web-centric paradigm. For example, the simple act of a user buying or browsing an item
may be viewed as an endorsement for that item. Such forms of feedback are commonly
used by online merchants such as Amazon.com, and the collection of this type of data
is completely effortless in terms of the work required of a customer. The basic idea of
recommender systems is to utilize these various sources of data to infer customer interests.
The entity to which the recommendation is provided is referred to as the user, and the
product being recommended is also referred to as an item. Therefore, recommendation
analysis is often based on the previous interaction between users and items, because past
interests and proclivities are often good indicators of future choices. A notable exception

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 1

1



2 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

is the case of knowledge-based recommender systems, in which the recommendations are
suggested on the basis of user-specified requirements rather than the past history of the
user.

So, what is the basic principle that underlies the working of recommendation algorithms?
The basic principle of recommendations is that significant dependencies exist between user-
and item-centric activity. For example, a user who is interested in a historical documentary
is more likely to be interested in another historical documentary or an educational pro-
gram, rather than in an action movie. In many cases, various categories of items may show
significant correlations, which can be leveraged to make more accurate recommendations.
Alternatively, the dependencies may be present at the finer granularity of individual items
rather than categories. These dependencies can be learned in a data-driven manner from
the ratings matrix, and the resulting model is used to make predictions for target users.
The larger the number of rated items that are available for a user, the easier it is to make
robust predictions about the future behavior of the user. Many different learning models
can be used to accomplish this task. For example, the collective buying or rating behav-
ior of various users can be leveraged to create cohorts of similar users that are interested
in similar products. The interests and actions of these cohorts can be leveraged to make
recommendations to individual members of these cohorts.

The aforementioned description is based on a very simple family of recommendation
algorithms, referred to as neighborhood models. This family belongs to a broader class of
models, referred to as collaborative filtering. The term “collaborative filtering” refers to
the use of ratings from multiple users in a collaborative way to predict missing ratings. In
practice, recommender systems can be more complex and data-rich, with a wide variety
of auxiliary data types. For example, in content-based recommender systems, the content
plays a primary role in the recommendation process, in which the ratings of users and the
attribute descriptions of items are leveraged in order to make predictions. The basic idea is
that user interests can be modeled on the basis of properties (or attributes) of the items they
have rated or accessed in the past. A different framework is that of knowledge-based systems,
in which users interactively specify their interests, and the user specification is combined
with domain knowledge to provide recommendations. In advanced models, contextual data,
such as temporal information, external knowledge, location information, social information,
or network information, may be used.

This book will study all types of basic systems, including collaborative, content-based,
and knowledge-based systems. We will also discuss both the basic and the enhanced models
of recommender systems in different domains. We will study various aspects of the robust-
ness of recommender systems, such as attack models, and the construction of trustworthy
models. In addition, a variety of evaluation and hybridization models for recommender sys-
tems will be studied thoroughly. In this chapter, the goal is to provide an overview of the
wide diversity of work in the field of recommender systems, and also relate the various topics
to the individual chapters of this book.

This chapter is organized as follows. Section 1.2 discusses the main goals of recommender
systems. Section 1.3 will introduce the basic models and evaluation methods used in rec-
ommender systems. The use of recommender systems in various data domains is discussed
in section 1.4. Advanced models for recommender systems are discussed in section 1.5.
Section 1.6 discusses the conclusions and summary.



1.2. GOALS OF RECOMMENDER SYSTEMS 3

1.2 Goals of Recommender Systems

Before discussing the goals of recommender systems, we introduce the various ways in which
the recommendation problem may be formulated. The two primary models are as follows:

1. Prediction version of problem: The first approach is to predict the rating value for a
user-item combination. It is assumed that training data is available, indicating user
preferences for items. For m users and n items, this corresponds to an incomplete
m × n matrix, where the specified (or observed) values are used for training. The
missing (or unobserved) values are predicted using this training model. This problem
is also referred to as the matrix completion problem because we have an incompletely
specified matrix of values, and the remaining values are predicted by the learning
algorithm.

2. Ranking version of problem: In practice, it is not necessary to predict the ratings of
users for specific items in order to make recommendations to users. Rather, a merchant
may wish to recommend the top-k items for a particular user, or determine the top-k
users to target for a particular item. The determination of the top-k items is more
common than the determination of top-k users, although the methods in the two cases
are exactly analogous. Throughout this book, we will discuss only the determination of
the top-k items, because it is the more common setting. This problem is also referred
to as the top-k recommendation problem, and it is the ranking formulation of the
recommendation problem.

In the second case, the absolute values of the predicted ratings are not important. The
first formulation is more general, because the solutions to the second case can be derived
by solving the first formulation for various user-item combinations and then ranking the
predictions. However, in many cases, it is easier and more natural to design methods for
solving the ranking version of the problem directly. Such methods will be discussed in
Chapter 13.

Increasing product sales is the primary goal of a recommender system. Recommender
systems are, after all, utilized by merchants to increase their profit. By recommending
carefully selected items to users, recommender systems bring relevant items to the attention
of users. This increases the sales volume and profits for the merchant. Although the primary
goal of a recommendation system is to increase revenue for the merchant, this is often
achieved in ways that are less obvious than might seem at first sight. In order to achieve the
broader business-centric goal of increasing revenue, the common operational and technical
goals of recommender systems are as follows:

1. Relevance: The most obvious operational goal of a recommender system is to recom-
mend items that are relevant to the user at hand. Users are more likely to consume
items they find interesting. Although relevance is the primary operational goal of a
recommender system, it is not sufficient in isolation. Therefore, we discuss several sec-
ondary goals below, which are not quite as important as relevance but are nevertheless
important enough to have a significant impact.

2. Novelty: Recommender systems are truly helpful when the recommended item is some-
thing that the user has not seen in the past. For example, popular movies of a preferred
genre would rarely be novel to the user. Repeated recommendation of popular items
can also lead to reduction in sales diversity [203].

3. Serendipity: A related notion is that of serendipity [229], wherein the items recom-
mended are somewhat unexpected, and therefore there is a modest element of lucky



4 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

discovery, as opposed to obvious recommendations. Serendipity is different from nov-
elty in that the recommendations are truly surprising to the user, rather than simply
something they did not know about before. It may often be the case that a particu-
lar user may only be consuming items of a specific type, although a latent interest in
items of other types may exist which the user might themselves find surprising. Unlike
novelty, serendipitous methods focus on discovering such recommendations.

For example, if a new Indian restaurant opens in a neighborhood, then the recom-
mendation of that restaurant to a user who normally eats Indian food is novel but
not necessarily serendipitous. On the other hand, when the same user is recommended
Ethiopian food, and it was unknown to the user that such food might appeal to her,
then the recommendation is serendipitous. Serendipity has the beneficial side effect
of increasing sales diversity or beginning a new trend of interest in the user. Increas-
ing serendipity often has long-term and strategic benefits to the merchant because
of the possibility of discovering entirely new areas of interest. On the other hand,
algorithms that provide serendipitous recommendations often tend to recommend ir-
relevant items. In many cases, the longer term and strategic benefits of serendipitous
methods outweigh these short-term disadvantages.

4. Increasing recommendation diversity: Recommender systems typically suggest a list of
top-k items. When all these recommended items are very similar, it increases the risk
that the user might not like any of these items. On the other hand, when the recom-
mended list contains items of different types, there is a greater chance that the user
might like at least one of these items. Diversity has the benefit of ensuring that the
user does not get bored by repeated recommendation of similar items.

Aside from these concrete goals, a number of soft goals are also met by the recommendation
process both from the perspective of the user and merchant. From the perspective of the user,
recommendations can help improve overall user satisfaction with the Web site. For example,
a user who repeatedly receives relevant recommendations from Amazon.com will be more
satisfied with the experience and is more likely to use the site again. This can improve user
loyalty and further increase the sales at the site. At the merchant end, the recommendation
process can provide insights into the needs of the user and help customize the user experience
further. Finally, providing the user an explanation for why a particular item is recommended
is often useful. For example, in the case of Netflix, recommendations are provided along with
previously watched movies. As we will see later, some recommendation algorithms are better
suited to providing explanations than others.

There is a wide diversity in the types of products recommended by such systems. Some
recommender systems, such as Facebook, do not directly recommend products. Rather
they may recommend social connections, which have an indirect benefit to the site by
increasing its usability and advertising profits. In order to understand the nature of these
goals, we will discuss some popular examples of historical and current recommender systems.
These examples will also showcase the broad diversity of recommender systems that were
built either as research prototypes, or are available today as commercial systems in various
problem settings.

GroupLens Recommender System

GroupLens was a pioneering recommender system, which was built as a research prototype
for recommendation of Usenet news. The system collected ratings from Usenet readers and
used them to predict whether or not other readers would like an article before they read it.



1.2. GOALS OF RECOMMENDER SYSTEMS 5

Some of the earliest automated collaborative filtering algorithms were developed in the
GroupLens1 setting. The general ideas developed by this group were also extended to other
product settings such as books and movies. The corresponding recommender systems were
referred to as BookLens andMovieLens, respectively. Aside from its pioneering contributions
to collaborative filtering research, the GroupLens research team was notable for releasing
several data sets during the early years of this field, when data sets were not easily available
for benchmarking. Prominent examples include three data sets [688] from the MovieLens
recommender system. These data sets are of successively increasing size, and they contain
105, 106, and 107 ratings, respectively.

Amazon.com Recommender System

Amazon.com [698] was also one of the pioneers in recommender systems, especially in the
commercial setting. During the early years, it was one of the few retailers that had the
foresight to realize the usefulness of this technology. Originally founded as a book e-retailer,
the business expanded to virtually all forms of products. Consequently, Amazon.com now
sells virtually all categories of products such as books, CDs, software, electronics, and so
on. The recommendations in Amazon.com are provided on the basis of explicitly provided
ratings, buying behavior, and browsing behavior. The ratings in Amazon.com are specified
on a 5-point scale, with lowest rating being 1-star, and the highest rating being 5-star. The
customer-specific buying and browsing data can be easily collected when users are logged
in with an account authentication mechanism supported by Amazon. Recommendations
are also provided to users on the main Web page of the site, whenever they log into their
accounts. In many cases, explanations for recommendations are provided. For example, the
relationship of a recommended item to previously purchased items may be included in the
recommender system interface.

The purchase or browsing behavior of a user can be viewed as a type of implicit rating,
as opposed to an explicit rating, which is specified by the user. Many commercial systems
allow the flexibility of providing recommendations both on the basis of explicit and implicit
feedback. In fact, several models have been designed (cf. section 3.6.4.6 of Chapter 3) to
jointly account for explicit and implicit feedback in the recommendation process. Some of
the algorithms used by early versions of the Amazon.com recommender system are discussed
in [360].

Netflix Movie Recommender System

Netflix was founded as a mail-order digital video disc (DVD) rental company [690] of movies
and television shows, which was eventually expanded to streaming delivery. At the present
time, the primary business of Netflix is that of providing streaming delivery of movies and
television shows on a subscription basis. Netflix provides users the ability to rate the movies
and television shows on a 5-point scale. Furthermore, the user actions in terms of watching
various items are also stored by Netflix. These ratings and actions are then used by Netflix
to make recommendations. Netflix does an excellent job of providing explanations for the
recommended items. It explicitly provides examples of recommendations based on specific
items that were watched by the user. Such information provides the user with additional

1 The term “GroupLens” currently refers to the academic group at the University of Minnesota [687]
that developed these algorithms. This group continues to work in the area of recommender systems, and
has made many pioneering contributions over the years.



6 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

information to decide whether or not to watch a specific movie. Presenting meaningful
explanations is important to provide the user with an understanding of why they might find
a particular movie interesting. This approach also makes it more likely for the user to act
on the recommendation and truly improves the user experience. This type of interesting
approach can also help improve customer loyalty and retention.

Netflix has contributed significantly to the research community as a result of the Netflix
Prize contest. This contest was designed to provide a forum for competition among various
collaborative filtering algorithms contributed by contestants. A data set of Netflix movie rat-
ings was released, and the task was to predict ratings of particular user-item combinations.
For this purpose, Netflix provided both a training data set, and a qualifying data set. The
training data set contained 100,480,507 ratings that 480,189 users gave to 17,770 movies.
The training set included a smaller probe set containing 1,408,395 ratings. The probe set
was based on more recent ratings than the remaining training data, and it was statistically
similar to the portion of the data set with hidden ratings. This portion of the data set was
referred to as the qualifying data set, and it contained over 2,817,131 triplets of the form
〈User,Movie,GradeDate〉. Note that the triplet did not contain the actual rating, which
was known only to the judges. Users needed to predict the ratings in the qualifying data
set based on models of the training data. This prediction was scored by the judges (or an
equivalent automated system), and the users were (continuously) informed of the prediction
results on only half the qualifying data set on the leader-board. This half of the qualifying
data set was referred to as the quiz set. The remaining half was used as the test set for
computing the final score and determining the prize-winners. The scores of the remaining
half were never revealed to the users until the very end. Furthermore, it was not revealed
to the contestants which of the triplets in the qualifying set belonged to the quiz set, and
which belonged to the test set. The reason for this unusual arrangement on the test set
was to ensure that the users did not leverage the scores on the leader-board to overfit their
algorithms to the test set. Issues related to overfitting will be described in Chapter 7 on
evaluation algorithms. Indeed, Netflix’s framework for handling the contestant entries is an
excellent example of proper evaluation design of recommendation algorithms.

The probe set, quiz set, and test set were designed to have similar statistical char-
acteristics. Prizes were given based on improvement of Netflix’s own recommendation al-
gorithm, known as Cinematch, or by improvement of the previous best score by a certain
threshold. Many well-known recommendation algorithms, such as latent factor models, were
popularized by the Netflix contest. The Netflix Prize contest is notable for its numerous
contributions to recommendation [71, 373] research.

Google News Personalization System

The Google News personalization system [697] is able to recommend news to users based on
their history of clicks. The clicks are associated with specific users based on identification
mechanisms enabled by Gmail accounts. In this case, news articles are treated as items. The
act of a user clicking on a news article can be viewed as a positive rating for that article.
Such ratings can be viewed as unary ratings, in which a mechanism exists for a user to
express their affinity for an item, but no mechanism exists for them to show their dislike.
Furthermore, the ratings are implicit, because they are inferred from user actions rather
than being explicitly specified by the user. Nevertheless, variations of the approach can also
be applied to cases where ratings are explicitly specified. Collaborative recommendation
algorithms are applied to the collected ratings, so that inferences can be made about the



1.2. GOALS OF RECOMMENDER SYSTEMS 7

Table 1.1: Examples of products recommended by various real-world recommender systems

System Product Goal

Amazon.com [698] Books and other products
Netflix [690] DVDs, Streaming Video
Jester [689] Jokes

GroupLens [687] News
MovieLens [688] Movies
last.fm [692] Music

Google News [697] News
Google Search [696] Advertisements

Facebook [691] Friends, Advertisements
Pandora [693] Music
YouTube [694] Online videos

Tripadvisor [695] Travel products
IMDb [699] Movies

personalized articles for specific users. A description of a collaborative filtering system for
Google News is provided in [175]. More details of the Google News personalization engine
are discussed in section 13.8.1.2 of Chapter 13.

Facebook Friend Recommendations

Social networking sites often recommend potential friends to users in order to increase
the number of social connections at the site. Facebook [691] is one such example of a so-
cial networking Web site. This kind of recommendation has slightly different goals than
a product recommendation. While a product recommendation directly increases the profit
of the merchant by facilitating product sales, an increase in the number of social connec-
tions improves the experience of a user at a social network. This, in turn, encourages the
growth of the social network. Social networks are heavily dependent on the growth of the
network to increase their advertising revenues. Therefore, the recommendation of poten-
tial friends (or links) enables better growth and connectivity of the network. This problem
is also referred to as link prediction in the field of social network analysis. Such forms of
recommendations are based on structural relationships rather than ratings data. Therefore,
the nature of the underlying algorithms is completely different. The link recommendation
problem is explored in detail in Chapter 10. The relationship of computational advertising
to recommender system technology is discussed in Chapter 13.

1.2.1 The Spectrum of Recommendation Applications

In the following, we will provide a brief overview of the application-specific goals accom-
plished by various implementations of recommender systems. A brief overview of the prod-
ucts suggested and the goals accomplished by various recommender systems are illustrated
in Table 1.1. Many of these recommender systems are focused on traditional e-commerce
applications for various products, including books, movies, videos, travel, and other goods
and services. The broader applicability of recommender systems to e-commerce applications
is discussed in [530]. However, recommender systems have expanded beyond the traditional
domain of product recommendations. It is noteworthy that some of the systems in Table 1.1



8 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

may not recommend specific products. An example is the Google search application, which
may advertise products along with their search results. This is the area of computational
advertising, which is a distinct area in its own right, but it is nevertheless closely related
to recommender systems. This area is discussed in detail in section 13.8.2 of Chapter 13.
Similarly, Facebook recommends friends, and online recruitment sites recommend employers
and job-seekers to one another. The last of these systems is also referred to as a reciprocal
recommender. The models for some of these recommendation algorithms are quite differ-
ent from those of traditional recommender systems. This book will study many of these
variations in detail.

1.3 Basic Models of Recommender Systems

The basic models for recommender systems work with two kinds of data, which are (i) the
user-item interactions, such as ratings or buying behavior, and (ii) the attribute information
about the users and items such as textual profiles or relevant keywords. Methods that use the
former are referred to as collaborative filtering methods, whereas methods that use the latter
are referred to as content-based recommendermethods. Note that content-based systems also
use the ratings matrices in most cases, although the model is usually focused on the ratings
of a single user rather than those of all users. In knowledge-based recommender systems,
the recommendations are based on explicitly specified user requirements. Instead of using
historical rating or buying data, external knowledge bases and constraints are used to create
the recommendation. Some recommender systems combine these different aspects to create
hybrid systems. Hybrid systems can combine the strengths of various types of recommender
systems to create techniques that can perform more robustly in a wide variety of settings.
In the following, we will discuss these basic models briefly, and also provide pointers to the
relevant chapters in the book where they are discussed.

1.3.1 Collaborative Filtering Models

Collaborative filtering models use the collaborative power of the ratings provided by multiple
users to make recommendations. The main challenge in designing collaborative filtering
methods is that the underlying ratings matrices are sparse. Consider an example of a movie
application in which users specify ratings indicating their like or dislike of specific movies.
Most users would have viewed only a small fraction of the large universe of available movies.
As a result, most of the ratings are unspecified. The specified ratings are also referred to as
observed ratings. Throughout this book, the terms “specified” and “observed” will be used
in an interchangeable way. The unspecified ratings will be referred to as “unobserved” or
“missing.”

The basic idea of collaborative filtering methods is that these unspecified ratings can be
imputed because the observed ratings are often highly correlated across various users and
items. For example, consider two users named Alice and Bob, who have very similar tastes. If
the ratings, which both have specified, are very similar, then their similarity can be identified
by the underlying algorithm. In such cases, it is very likely that the ratings in which only
one of them has specified a value, are also likely to be similar. This similarity can be used to
make inferences about incompletely specified values. Most of the models for collaborative
filtering focus on leveraging either inter-item correlations or inter-user correlations for the
prediction process. Some models use both types of correlations. Furthermore, some models
use carefully designed optimization techniques to create a training model in much the same



1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 9

way a classifier creates a training model from the labeled data. This model is then used
to impute the missing values in the matrix, in the same way that a classifier imputes the
missing test labels. There are two types of methods that are commonly used in collaborative
filtering, which are referred to as memory-based methods and model-based methods:

1. Memory-based methods: Memory-based methods are also referred to as neighborhood-
based collaborative filtering algorithms. These were among the earliest collaborative
filtering algorithms, in which the ratings of user-item combinations are predicted on
the basis of their neighborhoods. These neighborhoods can be defined in one of two
ways:

• User-based collaborative filtering: In this case, the ratings provided by like-minded
users of a target user A are used in order to make the recommendations for A.
Thus, the basic idea is to determine users, who are similar to the target user A,
and recommend ratings for the unobserved ratings of A by computing weighted
averages of the ratings of this peer group. Therefore, if Alice and Bob have rated
movies in a similar way in the past, then one can use Alice’s observed ratings
on the movie Terminator to predict Bob’s unobserved ratings on this movie. In
general, the k most similar users to Bob can be used to make rating predictions
for Bob. Similarity functions are computed between the rows of the ratings matrix
to discover similar users.

• Item-based collaborative filtering: In order to make the rating predictions for
target item B by user A, the first step is to determine a set S of items that are
most similar to target item B. The ratings in item set S, which are specified
by A, are used to predict whether the user A will like item B. Therefore, Bob’s
ratings on similar science fiction movies like Alien and Predator can be used to
predict his rating on Terminator. Similarity functions are computed between the
columns of the ratings matrix to discover similar items.

The advantages of memory-based techniques are that they are simple to implement
and the resulting recommendations are often easy to explain. On the other hand,
memory-based algorithms do not work very well with sparse ratings matrices. For
example, it might be difficult to find sufficiently similar users to Bob, who have rated
Gladiator. In such cases, it is difficult to robustly predict Bob’s rating of Gladiator. In
other words, such methods might lack full coverage of rating predictions. Nevertheless,
the lack of coverage is often not an issue, when only the top-k items are required.
Memory-based methods are discussed in detail in Chapter 2.

2. Model-based methods: In model-based methods, machine learning and data mining
methods are used in the context of predictive models. In cases where the model is
parameterized, the parameters of this model are learned within the context of an
optimization framework. Some examples of such model-based methods include deci-
sion trees, rule-based models, Bayesian methods and latent factor models. Many of
these methods, such as latent factor models, have a high level of coverage even for
sparse ratings matrices. Model-based collaborative filtering algorithms are discussed
in Chapter 3.

Even though memory-based collaborative filtering algorithms are valued for their simplicity,
they tend to be heuristic in nature, and they do not work well in all settings. However, the
distinction between memory-based and model-based methods is somewhat artificial, because



10 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

I LOVED IT

I LIKED IT

IT WAS OK

I DIDN’T LIKE IT

I HATED IT

Figure 1.1: Example of 5-point interval ratings

1. The quality of the course content

2. The instructor's overall teaching

Excellent
Very
Good Good Fair Poor NA

Overall Ratings

Figure 1.2: Example of ordinal ratings used in Stanford University course evaluations

memory-based methods can also be considered similarity-basedmodels, albeit heuristic ones.
In section 2.6 of Chapter 2, it will also be shown that some variations of neighborhood-based
methods can be formally expressed as regression-based models. Latent factor models were
popularized in later years as a result of the Netflix Prize contest, although similar algo-
rithmswere proposed much earlier in the context of (generic) incomplete data sets [24].
Recently, it was shown that some combinations of memory-based and model-based meth-
ods [309] provide very accurate results.

1.3.1.1 Types of Ratings

The design of recommendation algorithms is influenced by the system used for tracking
ratings. The ratings are often specified on a scale that indicates the specific level of like
or dislike of the item at hand. It is possible for ratings to be continuous values, such as in
the case of the Jester joke recommendation engine [228, 689], in which the ratings can take
on any value between -10 and 10. This is, however, relatively rare. Usually, the ratings are
interval-based, where a discrete set of ordered numbers are used to quantify like or dislike.
Such ratings are referred to as interval-based ratings. For example, a 5-point rating scale
might be drawn from the set {−2,−1, 0, 1, 2}, in which a rating of −2 indicates an extreme
dislike, and a rating of 2 indicates a strong affinity to the item. Other systems might draw
the ratings from the set {1, 2, 3, 4, 5}.

The number of possible ratings might vary with the system at hand. The use of 5-point,
7-point, and 10-point ratings is particularly common. The 5-star ratings system, illustrated
in Figure 1.1, is an example of interval ratings. Along each of the possible ratings, we have
indicated a semantic interpretation of the user’s level of interest. This interpretation might
vary slightly across different merchants, such as Amazon or Netflix. For example, Netflix
uses a 5-star ratings system in which the 4-star point corresponds to “really liked it,” and
the central 3-star point corresponds to “liked it.” Therefore, there are three favorable ratings
and two unfavorable ratings in Netflix, which leads to an unbalanced rating scale. In some



1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 11

cases, there may be an even number of possible ratings, and the neutral rating might be
missing. This approach is referred to as a forced choice rating system.

One can also use ordered categorical values such as {Strongly Disagree,Disagree,
Neutral,Agree, Strongly Agree} in order to achieve the same goals. In general, such rat-
ings are referred to as ordinal ratings, and the term is derived from the concept of ordinal
attributes. An example of ordinal ratings, used in Stanford University course evaluation
forms, is illustrated in Figure 1.2. In binary ratings, the user may represent only a like or
dislike for the item and nothing else. For example, the ratings may be 0, 1, or unspecified
values. The unspecified values need to be predicted to 0-1 values. A special case of ratings
is that of unary ratings, in which there is a mechanism for a user to specify a liking for
an item but no mechanism to specify a dislike. Unary ratings are particularly common,
especially in the case of implicit feedback data sets [259, 260, 457]. In these cases, customer
preferences are derived from their activities rather than their explicitly specified ratings.
For example, the buying behavior of a customer can be converted to unary ratings. When
a customer buys an item, it can be viewed as a preference for the item. However, the act of
not buying an item from a large universe of possibilities does not always indicate a dislike.
Similarly, many social networks, such as Facebook, use “like” buttons, which provide the
ability to express liking for an item. However, there is no mechanism to specify dislike for
an item. The implicit feedback setting can be viewed as the matrix completion analog of
the positive-unlabeled (PU) learning problem in data classification [259].

Examples of Explicit and Implicit Ratings

A quantitative example of explicit ratings is illustrated in Figure 1.3(a). In this case, there
are 6 users, labeled U1 . . . U6, and 6 movies with specified titles. Higher ratings indicate more
positive feedback in Figure 1.3(a). The missing entries correspond to unspecified preferences.
The example of this figure represents a small toy example. In general, the ratings could be
represented as anm×n matrix, wherem and n are typically very large and may range in the
order of hundreds of thousands. Even though this particular example uses a 6 × 6 matrix,
the values of m and n are typically not the same in real-world scenarios. A ratings matrix
is sometimes referred to as a utility matrix, although the two may not always be the same.
Strictly speaking, when the utility refers to the amount of profit, then the utility of a user-
item combination refers to the amount of profit incurred by recommending that item to the
particular user. While utility matrices are often set to be the same as the ratings matrices,
it is possible for the application to explicitly transform the ratings to utility values based
on domain-specific criteria. All collaborative filtering algorithms are then applied to the
utility matrix rather than the ratings matrix. However, such an approach is rarely used in
practice, and most collaborative filtering algorithms work directly with the ratings matrix.

An example of a unary ratings matrix is illustrated in Figure 1.3(b). For cases in which
the ratings are unary, the matrix is referred to as a positive preference utility matrix because
it allows only the specification of positive preferences. The two matrices in Figure 1.3 have
the same set of observed entries, but they provide very different insights. For example, the
users U1 and U3 are very different in Figure 1.3(a) because they have very different ratings
for their mutually specified entries. On the other hand, these users would be considered very
similar in Figure 1.3(b) because these users have expressed a positive preference for the same
items. The ratings-based utility provides a way for users to express negative preferences for
items. For example, user U1 does not like the movie Gladiator in Figure 1.3(a). There is no
mechanism to specify this in the positive-preference utility matrix of Figure 1.3(b) beyond



12 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

U
R

G
LA

D
IT
O
R

BE
N
H

G
O
D
FT
H
ER

G
O
O
D
FE
LL
AS

SC
AR

FA
CE

SP
AR

TA
CU

S

U1 1 5 21

U2

35

5

1

4

U 35

3

1

4

U3

U4

3

5

5

4U6

U5

AT
O
R

U
R

AT
H
ER

FE
LL
AS

AC
E

AC
U
S

G
LA

D
I

BE
N

H

G
O
D
F

G
O
O
D

SC
AR

F

SP
AR

T

U1 1 1 11

U2

11

1

1

1

U 11

1

1

1

U3

U4

1

1

1

1U6

U5

(a) Ordered ratings (b) Unary ratings

Figure 1.3: Examples of utility matrices

a relatively ambiguous missing entry. In other words, the matrix in Figure 1.3(b) is less
expressive. While Figure 1.3(b) provides an example of a binary matrix, it is possible for
the nonzero entries to be arbitrary positive values. For example, they could correspond to
the quantities of items bought by the different users. In general, unary matrices are created
by user actions such as buying an item, and are therefore also referred to as implicit feedback
matrices.

Unary ratings have a significant effect on the recommendation algorithm at hand, be-
cause no information is available about whether a user dislikes an item. In the case of unary
matrices, it is often recommended [260] to perform the analysis in a simple way by treating
the missing entries as 0s in the initial phase. However, the final predicted value by the
learning algorithm might be much larger than 0, especially if the item matches user inter-
ests. The recommended items are therefore based on the entries with the largest positive
prediction error over the initial “zero” assumption. In fact, if the missing entries are not
substituted with 0s, significant overfitting is possible. This type of overfitting is an artifact
of the fact that there is often not a sufficient level of discrimination between the various
observed values of the ratings. In explicit feedback matrices, ratings correspond to (highly
discriminated) preferences, whereas in implicit feedback matrices, ratings correspond to
(less discriminated) confidences. In a later chapter, we will provide a specific example of
overfitting with implicit feedback matrices when missing entries are not treated as zeros
(cf. section 3.6.6.2 of Chapter 3).

Pre-substitution of missing ratings is not recommended in explicit ratings matrices. In
explicit ratings matrices with both likes and dislikes, the substitution of missing entries with
any value (such as 0 or the row/column/data mean) always leads to a significant amount
of bias in the analysis. In the unary case, substituting missing entries with 0s also leads
to some bias [457, 467, 468], although it is often small because the default assumption in
implicit feedback data, such as buying data, is that the user will not buy most of the items.
One is often willing to live with this bias in the unary case, because a significant amount
of overfitting is reduced by the substitution. There are also some interesting computational
effects of such choices. These trade-offs are discussed in Chapters 2 and 3.



1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 13

TRAINING
ROWS

TEST
ROWS

INDEPENDENT
VARIABLES

DEPENDENT
VARIABLE

NO
DEMARCATION

BETWEEN
TRAINING AND
TEST ROWS

NO DEMARCATIONBETWEEN DEPENDENT
AND INDEPENDENT VARIABLES

(a) Classification (b) Collaborative filtering

Figure 1.4: Comparing the traditional classification problem with collaborative filtering.
Shaded entries are missing and need to be predicted.

1.3.1.2 Relationship with Missing Value Analysis

Collaborative filtering models are closely related to missing value analysis. The traditional
literature on missing value analysis studies the problem of imputation of entries in an in-
completely specified data matrix. Collaborative filtering can be viewed as a (difficult)special
case of this problem in which the underlying data matrix is very large and sparse. A detailed
discussion of methods for missing value analysis in the statistical literature may be found
in [362]. Many of these methods can also be used for recommender systems, although some
of them might require specialized adaptations for very large and sparse matrices. In fact,
some of the recent classes of models for recommender systems, such as latent factor models,
were studied earlier in the context of missing value analysis [24]. Similar methods were in-
dependently proposed in the context of recommender systems [252, 309, 313, 500, 517, 525].
In general, many classical missing value estimation methods [362] can also be used for
collaborative filtering.

1.3.1.3 Collaborative Filtering as a Generalization of Classification and
Regression Modeling

Collaborative filtering methods can be viewed as generalizations of classification and regres-
sion modeling. In the classification and regression modeling problems, the class/dependent
variable can be viewed as an attribute with missing values. Other columns are treated as
features/independent variables. The collaborative filtering problem can be viewed as a gen-
eralization of this framework because any column is allowed to have missing values rather
than (only) the class variable. In the recommendation problem, a clear distinction does



14 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

not exist between class variables and feature variables because each feature plays the dual
role of a dependent and independent variable. This distinction exists in the classification
problem only because the missing entries are restricted to a special column. Furthermore,
there is no distinction between training and test rows in collaborative filtering because any
row might contain missing entries. Therefore, it is more meaningful to speak of training
and test entries in collaborative filtering rather than training and test rows. Collaborative
filtering is a generalization of classification/regression modeling in which the prediction is
performed in entry-wise fashion rather than row-wise fashion. This relationship between
classification/regression modeling and collaborative filtering is important to keep in mind
because many principles of classification and regression modeling methods can be general-
ized to recommender systems. The relationship between the two problems is illustrated in
Figure 1.4. This figure is particularly useful in relating collaborative filtering with classifica-
tion, and it will be revisited multiple times in this book. wherever the similarities between
these two problems are leveraged in some way for algorithmic or theoretical development.

The matrix completion problem also shares a number of characteristics with the trans-
ductive setting in classification and regression. In the transductive setting, the test instances
are also included in the training process (typically with the use of a semisupervised algo-
rithm), and it is often hard to make predictions for test instances that are not available at
the time of training. On the other hand, models in which predictions can be easily made for
new instances are referred to as inductive. For example, a naive Bayes model in classification
is inherently inductive because one can easily use it to predict the label of a test instance
for which the features were not known at the time of building the Bayes model.

The setting for matrix completion is inherently transductive because the training and
test data are tightly integrated with one another in the m× n ratings matrix R, and many
models cannot easily predict ratings for out-of-sample users and/or items. For example, if
John is added to the ratings matrix (with many specified ratings) after the collaborative
filtering model has already been constructed, many off-the-shelf methods will not be able
to make predictions for John. This is especially true for model-based collaborative filtering
methods. However, some recent matrix completion models have also been designed to be
inductive in which ratings can be predicted for out-of-sample users and/or items.

1.3.2 Content-Based Recommender Systems

In content-based recommender systems, the descriptive attributes of items are used to make
recommendations. The term “content” refers to these descriptions. In content-based meth-
ods, the ratings and buying behavior of users are combined with the content information
available in the items. For example, consider a situation where John has rated the movie
Terminator highly, but we do not have access to the ratings of other users. Therefore, col-
laborative filtering methods are ruled out. However, the item description of Terminator
contains similar genre keywords as other science fiction movies, such as Alien and Predator.
In such cases, these movies can be recommended to John.

In content-based methods, the item descriptions, which are labeled with ratings, are
used as training data to create a user-specific classification or regression modeling problem.
For each user, the training documents correspond to the descriptions of the items she has
bought or rated. The class (or dependent) variable corresponds to the specified ratings or
buying behavior. These training documents are used to create a classification or regression
model, which is specific to the user at hand (or active user). This user-specific model is used
to predict whether the corresponding individual will like an item for which her rating or
buying behavior is unknown.



1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 15

Content-based methods have some advantages in making recommendations for new
items, when sufficient rating data are not available for that item. This is because other
items with similar attributes might have been rated by the active user. Therefore, the su-
pervised model will be able to leverage these ratings in conjunction with the item attributes
to make recommendations even when there is no history of ratings for that item.

Content-based methods do have several disadvantages as well:

1. In many cases, content-based methods provide obvious recommendations because of
the use of keywords or content. For example, if a user has never consumed an item with
a particular set of keywords, such an item has no chance of being recommended. This
is because the constructed model is specific to the user at hand, and the community
knowledge from similar users is not leveraged. This phenomenon tends to reduce the
diversity of the recommended items, which is undesirable.

2. Even though content-based methods are effective at providing recommendations for
new items, they are not effective at providing recommendations for new users. This is
because the training model for the target user needs to use the history of her ratings.
In fact, it is usually important to have a large number of ratings available for the
target user in order to make robust predictions without overfitting.

Therefore, content-based methods have different trade-offs from collaborative filtering
systems.

Although the aforementioned description provides the conventional learning-based view
of content-based methods, a broader view of these methods is sometimes used. For exam-
ple, users can specify relevant keywords in their own profiles. These profiles can be matched
with item descriptions in order to make recommendations. Such an approach does not
use ratings in the recommendation process, and it is therefore useful in cold-start scenar-
ios. However, such methods are often viewed as a distinct class of recommender systems,
known as knowledge-based systems, because the similarity metrics are often based on do-
main knowledge. Knowledge-based recommender systems are often considered to be closely
related to content-based recommender systems, and it is sometimes questioned whether a
clear demarcation exists between the two classes of methods [558]. Methods for content-
based recommender systems are discussed in Chapter 4.

1.3.3 Knowledge-Based Recommender Systems

Knowledge-based recommender systems are particularly useful in the context of items that
are not purchased very often. Examples include items such as real estate, automobiles,
tourism requests, financial services, or expensive luxury goods. In such cases, sufficient
ratings may not be available for the recommendation process. As the items are bought rarely,
and with different types of detailed options, it is difficult to obtain a sufficient number of
ratings for a specific instantiation (i.e., combination of options) of the item at hand. This
problem is also encountered in the context of the cold-start problem, when sufficient ratings
are not available for the recommendation process. Furthermore, the nature of consumer
preferences may evolve over time when dealing with such items. For example, the model
of a car may evolve significantly over a few years, as a result of which the preferences
may show a corresponding evolution. In other cases, it might be difficult to fully capture
user interest with historical data such as ratings. A particular item may have attributes
associated with it that correspond to its various properties, and a user may be interested
only in items with specific properties. For example, cars may have several makes, models,



16 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

Table 1.2: The conceptual goals of various recommender systems
Approach Conceptual Goal Input

Collaborative Give me recommendations based on a collaborative approach User ratings +
that leverages the ratings and actions of my peers/myself. community ratings

Content- Give me recommendations based on the content (attributes) User ratings +
based I have favored in my past ratings and actions. item attributes

Knowledge- Give me recommendations based on my explicit specification User specification +
based of the kind of content (attributes) I want. item attributes +

domain knowledge

Figure 1.5: A hypothetical example of an initial user interface for a constraint-based rec-
ommender)

colors, engine options, and interior options, and user interests may be regulated by a very
specific combination of these options. Thus, in these cases, the item domain tends to be
complex in terms of its varied properties, and it is hard to associate sufficient ratings with
the large number of combinations at hand.

Such cases can be addressed with knowledge-based recommender systems, in which rat-
ings are not used for the purpose of recommendations. Rather, the recommendation processis
performed on the basis of similarities between customer requirements and item descriptions,
or the use of constraints specifying user requirements. The process is facilitated with the use
of knowledge bases, which contain data about rules and similarity functions to use during the
retrieval process. In fact, the knowledge bases are so important to the effective functioning
of these methods that the approach takes its name from this fact. The explicit specification
of requirements results in greater control of users over the recommendation process. In both
collaborative and content-based systems, recommendations are decided entirely by either
the user’s past actions/ratings, the action/ratings of her peers, or a combination of the two.
Knowledge-based systems are unique in that they allow the users to explicitly specify what
they want. This difference is illustrated in Table 1.2.

Knowledge-based recommender systems can be classified on the basis of the type of the
interface (and corresponding knowledge) used to achieve the aforementioned goals:

1. Constraint-based recommender systems: In constraint-based systems [196, 197], users
typically specify requirements or constraints (e.g., lower or upper limits) on the item



1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 17

Figure 1.6: A hypothetical example of an initial user interface for a case-based recommender)

attributes. An example of such an interface is illustrated in Figure 1.5. Domain-specific
rules are used to match the user requirements to item attributes. These rules represent
the domain-specific knowledge used by the system. Such rules could take the form of
domain-specific constraints on the item attributes (e.g., “Cars before year 1970 do
not have cruise control.”). Furthermore, constraint-based systems often create rules
relating user attributes to item attributes (e.g., “Older investors do not invest in ultra
high-risk products.”). In such cases, user attributes may also be specified in the search
process. Depending on the number and type of returned results, the user might have
an opportunity to modify their original requirements. For example, they might relax
some of their constraints when too few results are returned, or they might add more
constraints. This search process is interactively repeated until the user arrives at her
desired results.

2. Case-based recommender systems: In case-based recommender systems [102, 116, 377,
558], specific cases are specified by the user as targets or anchor points. Similarity
metrics are defined on the item attributes to retrieve similar items to these cases. An
example of such an interface is illustrated in Figure 1.6. The similarity metrics are
often carefully defined in a domain-specific way. Therefore, the similarity metrics form
the domain knowledge that is used in such systems. The returned results are often
used as new target cases with some interactive modifications by the user. For example,
when a user sees a returned result, which is almost similar to what they want, they
might re-issue a query with that target, but with some of the attributes changed to
the user’s liking. This interactive process is used to guide the user towards items of
interest.



18 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

Note that in both cases, the system provides an opportunity to the user to change their
specified requirements. However, the way in which this is done is different in the two cases.
In case-based systems, examples (or cases) are used as anchor points to guide the search
in combination with similarity metrics. Critiquing interfaces are particularly popular for
expressing feedback in such systems, where users iteratively modify one or more attributes
of a preferred item in each iteration. In constraint-based systems, rules (or constraints) are
used to guide the search. The form of the guidance may often take the form of search-based
systems, where users specify their constraints with a search-based interface.

How is the interactivity in knowledge-based recommender systems achieved? This guid-
ance takes place through one or more of the following methods:

1. Conversational systems: In this case, the user preferences are determined iteratively
in the context of a feedback loop. The main reason for this is that the item domain is
complex and the user preferences can be determined only in the context of an iterative
conversational system.

2. Search-based systems: In search-based systems, user preferences are elicited by using
a preset sequence of questions such as the following: “Do you prefer a house in a
suburban area or within the city?” In some cases, specific search interfaces may be
set up in order to provide the ability to specify user constraints.

3. Navigation-based recommendation: In navigation-based recommendation, the user
specifies a number of change requests to the item being currently recommended.
Through an iterative set of change requests, it is possible to arrive at a desirable
item. An example of a change request specified by the user, when a specific house is
being recommended is as follows: “I would like a similar house about 5 miles west of
the currently recommended house.” Such recommender systems are also referred to
as critiquing recommender systems [417].

It is noteworthy that both knowledge-based and content-based systems depend significantly
on the attributes of the items. Because of their use of content-attributes, knowledge-based
systems inherit some of the same disadvantages as content-based systems. For example, just
like content-based systems, the recommendations in knowledge-based systems can some-
times be obvious because the use of community (i.e., peer) ratings is not leveraged. In fact,
knowledge-based systems are sometimes considered to be the “cousins” of content-based sys-
tems [558]. The main difference is that content-based systems learn from past user behavior,
whereas knowledge-based recommendation systems recommend based on active user speci-
fication of their needs and interests. Therefore, in most of the recommendation literature,
knowledge-based recommenders are considered to be a distinct category from content-based
recommenders. These distinctions are based both on the goals of such systems and the kind
of input data used (see Table 1.2). The different forms of knowledge-based recommender
systems are discussed in Chapter 5.

1.3.3.1 Utility-Based Recommender Systems

In utility-based recommender systems, a utility function is defined on the product features
in order to compute the probability of a user liking the item [239]. The central challenge
in utility-based methods is in defining an appropriate utility function for the user at hand.
It is noteworthy that all recommender schemes, whether collaborative, content-based, or
knowledge-based methods, implicitly rank the recommended items on the basis of their
perceived value (or utility) for the target user. In utility-based systems, this utility value is



1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 19

based on a function that is known a priori. In this sense, such functions can be viewed as
a kind of external knowledge. Therefore, utility-based systems can be viewed as a specific
case of knowledge-based recommender systems. In fact, it will be shown in Chapter 5 that
utility functions are used frequently in various ways for ranking items in knowledge-based
recommender systems.

1.3.4 Demographic Recommender Systems

In demographic recommender systems, the demographic information about the user is lever-
aged to learn classifiers that can map specific demographics to ratings or buying propensities.
An early recommender system, referred to as Grundy [508], recommended books based on
the library of manually assembled stereotypes. The characteristics of the user were collected
with the use of an interactive dialogue. The work in [320] observed that the demographic
groups from marketing research can be used to recommend items. Another work [475] makes
Web page recommendations on the basis of the demographic characteristics of users that
have rated a particular page highly. In many cases, demographic information can be com-
bined with additional context to guide the recommendation process. This approach is related
to the methodology of context-sensitive recommender systems. Some of these methods are
discussed in section 8.5.3 of Chapter 8.

More recent techniques have focused on using classifiers for making recommendations.
One of the interesting systems in this respect was a technique that extracted features from
user home pages in order to predict their likelihood of liking certain restaurants. Rule-based
classifiers [31, 32] are often used to relate the demographic profile to buying behavior in an
interactive way. While the approach in [31, 32] was not specifically used to recommend spe-
cific items, it can easily be paired with a recommender system. Such recommender systems
are not very different from the vanilla classification and regression modeling problem, in
which feature variables correspond to the demographic profiles and the dependent variables
correspond to the ratings or to the buying behavior. Although demographic recommender
systems do not usually provide the best results on a stand-alone basis, they add significantly
to the power of other recommender systems as a component of hybrid or ensemble mod-
els. Demographic techniques are sometimes combined with knowledge-based recommender
systems to increase their robustness.

1.3.5 Hybrid and Ensemble-Based Recommender Systems

The three aforementioned systems exploit different sources of input, and they may work
well in different scenarios. For example, collaborative filtering systems rely on community
ratings, content-based methods rely on textual descriptions and the target user’s own rat-
ings, and knowledge-based systems rely on interactions with the user in the context of
knowledge bases. Similarly, demographic systems use the demographic profiles of the users
to make recommendations. It is noteworthy that these different systems use different types
of input, and have different strengths and weaknesses. Some recommender systems, such
as knowledge-based systems, are more effective in cold-start settings where a significant
amount of data is not available. Other recommender systems, such as collaborative meth-
ods, are more effective when a lot of data is available.

In many cases where a wider variety of inputs is available, one has the flexibility of using
different types of recommender systems for the same task. In such cases, many opportuni-
ties exist for hybridization, where the various aspects from different types of systems are
combined to achieve the best of all worlds. Hybrid recommender systems are closely related



20 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

to the field of ensemble analysis, in which the power of multiple types of machine learning
algorithms is combined to create a more robust model. Ensemble-based recommender sys-
tems are able to combine not only the power of multiple data sources, but they are also able
to improve the effectiveness of a particular class of recommender systems (e.g., collaborative
systems) by combining multiple models of the same type. This scenario is not very different
from that of ensemble analysis in the field of data classification. Chapter 6 studies various
hybridization strategies for recommender systems.

1.3.6 Evaluation of Recommender Systems

Given a set of recommendation algorithms, how well do they perform? How can we evalu-
ate their relative effectiveness? Recommender systems share several conceptual similarities
with the classification and regression modeling problem. In classification and regression
modeling, the missing class variable needs to be predicted from the feature variables. In
recommender systems, any of the matrix entries may be missing and need to be predicted
in a data-driven way from the observed entries in the remaining matrix. In this sense, the
recommendation problem can be viewed as a generalization of the classification problem.
Therefore, many of the models used for evaluation of classifiers can be used for evaluating
recommender systems, albeit with some modifications. There are significant variations in
the evaluation techniques used for different aspects of recommender systems, such as rating
prediction or ranking. The former is closely related to classification and regression model-
ing, whereas the latter is closely related to the evaluation of retrieval effectiveness in search
and information retrieval applications. Evaluation methods for recommender systems are
discussed in detail in Chapter 7.

1.4 Domain-Specific Challenges in Recommender

Systems

In different domains, such as temporal data, location-based data, and social data, the con-
text of the recommendation plays a critical role. Therefore, the notion of contextual rec-
ommender systems was developed to address the additional side information that arises in
these domains. This notion is used with different modifications for various types of data,
such as temporal data, location data, or social data.

1.4.1 Context-Based Recommender Systems

Context-based or context-aware recommender systems take various types of contextual in-
formation into account, while making recommendations. Such contextual information could
include time, location, or social data. For example, the types of clothes recommended by a
retailer might depend both on the season and the location of the customer. Another example
is the case in which a particular type of festival or holiday affects the underlying customer
activity.

It has generally been observed that the use of such contextual information can greatly im-
prove the effectiveness of the recommendation process. Context-based recommender systems
are incredibly powerful because the underlying ideas are relevant to a wide variety of domain-
specific settings. In fact, a recurring theme throughout the later chapters of the book, will
be the use of a multidimensional model [7] for context-specific recommendations in different



1.4. DOMAIN-SPECIFIC CHALLENGES IN RECOMMENDER SYSTEMS 21

domain-specific settings. Context-aware recommender systems will be discussed in Chap-
ter 8 in a general sense. However, individual aspects of the context, such as time, location,
and social information, are studied in detail in other chapters. A general review of these
different aspects is provided below.

1.4.2 Time-Sensitive Recommender Systems

In many settings, the recommendations for an item might evolve with time. For example,
the recommendations for a movie may be very different at the time of release from the
recommendations received several years later. In such cases, it is extremely important to
incorporate temporal knowledge in the recommendation process. The temporal aspect in
such recommender systems can be reflected in several ways:

1. The rating of an item might evolve with time, as community attitudes evolve and
the interests of users change over time. User interests, likes, dislikes, and fashions
inevitably evolve with time.

2. The rating of an item might be dependent on the specific time of day, day of week,
month, or season. For example, it makes little sense to recommend winter clothing
during the summer, or raincoats during the dry season.

The first type of recommender system is created by incorporating time as an explicit pa-
rameter in collaborative filtering systems. The second type can be viewed as a special case
of context-based recommender systems. Temporal recommender systems are challenging be-
cause of the fact that the matrix of ratings is sparse, and the use of specific temporal context
aggravates the sparsity problem. Therefore, it is particularly important to have access to
large data sets in these settings.

Another common setting is that of implicit feedback data sets such as Web click-streams.
The user activity on the Web and other internet platforms creates a lot of useful data
that can be mined to make recommendations about future activity. In such cases, discrete
sequential pattern mining and Markov models are helpful. The problem of time-sensitive
recommendation is discussed in detail in Chapter 9.

1.4.3 Location-Based Recommender Systems

With the increasing popularity of GPS-enabled mobile phones, consumers are often in-
terested in location-based recommendations. For example, a traveling user may wish to
determine the closest restaurant based on her previous history of ratings for other restau-
rants. In general, the recommendation of places always has a location aspect built into it.
An example of such a system is Foursquare2, which recommends various types of places such
as restaurants or nightlife venues. There are two types of spatial locality that are common
to such systems:

1. User-specific locality: The geographical location of a user has an important role in
her preferences. For example, a user from Wisconsin might not have the same movie
preferences as a user from New York. This type of locality is referred to as preference
locality.

2http://foursquare.com

http://foursquare.com


22 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

2. Item-specific locality: The geographical location of an item (e.g., restaurant) might
have an impact on the relevance of the item, depending on the current location of
the user. Users are generally not willing to travel very far from their current location.
This type of locality is referred to as travel locality.

The algorithms for preference locality and travel locality are quite different. The former
are closer to context-sensitive systems, whereas the latter are usually designed as ad hoc
heuristics. Location-based recommender systems have witnessed an increasing interest in
recent years because of the increasing prevalence of mobile phones and other GPS-enabled
devices. Location-based recommender systems are discussed in detail in Chapter 9.

1.4.4 Social Recommender Systems

Social recommender systems are based on network structures, social cues and tags, or a
combination of these various network aspects. In general, the recommender systems that
are based on social cues and tags are slightly different from those that are based purely on
structural aspects. Recommender systems, which are based purely on structural aspects,
are used to suggest nodes and links within the network itself. On the other hand, social
recommender systems may be also be used to recommend various products with the use of
social cues. Both these forms of recommender systems will be studied in this book. However,
these forms of recommendation are sufficiently different that they will be studied in different
chapters of this book. It is important to note that the utility of structural recommender
systems extends beyond social networks, because such methods are applied to various types
of Web-enabled networks.

1.4.4.1 Structural Recommendation of Nodes and Links

Various types of networks, including social networks, are composed of nodes and links. In
many cases, it is desirable to recommend nodes and links. For example, a personalized Web
search may require a recommendation of material which is related to a particular topic.
Since the Web can be viewed as a graph, such methods can be viewed as a node recommen-
dation problem. The problem of node recommendation is closely related to the problem of
Web search. In fact, both problems require the use of various forms of ranking algorithms.
A key component of these methods is the use of the PageRank algorithm, although the
personalization of such algorithms is more closely related to recommendation algorithms.
Therefore, such algorithms are also referred to as personalized PageRank algorithms. In
cases where examples of nodes of interest are available, such nodes can be used as training
data in order to determine other nodes of interest. This problem is referred to as collective
classification. A closely related problem is that of the link recommendation or link predic-
tion problem, where it is desirable to suggest friends (or potential links) for a user in a
social network. The link prediction problem also has numerous applications beyond social
networks. Interestingly, the problems of ranking, collective classification, and link recom-
mendation are closely related. In fact, solutions to one problem are often used as subroutines
for other problems. For example, ranking and link prediction methods are often used for
traditional product recommendations in user-item graphs. In fact, these methods can be
used to perform recommendations in many problem settings, which can be transformed into
graphs. Methods for node and link recommendations are discussed in Chapter 10.



1.5. ADVANCED TOPICS AND APPLICATIONS 23

1.4.4.2 Product and Content Recommendations with Social Influence

Many forms of product and content recommendation are performed with the help of network
connections and other social cues. This problem is also referred to as viral marketing. In
viral marketing, products are recommended with the use of word-of-mouth systems. In
order to achieve this goal, it is important to be able to determine influential and topically
relevant entities in the network. This problem is referred to as influence analysis in social
networks [297]. Many variations of this problem have been proposed, in which the influencers
are found in a topically sensitive way, in the social stream scenario. For example, determining
the influential users in a Twitter stream for specific topics may be very useful for viral
marketing. In other cases, social cues are harvested from social networks in order to make
recommendations. These methods for discussed in Chapter 10.

1.4.4.3 Trustworthy Recommender Systems

Many social media sites, such as Epinions [705] or Slashdot [706], allow users to express
their trust and distrust in one another, either in a direct way, or through various feedback
mechanisms. For example, users can express their trust or distrust in reviews of other users,
or they may directly specify their trust or distrust relationships with other users. This
trust information is very useful for making more robust recommendations. For example,
it is evident that a user-based neighborhood method should be computed with the use of
trustworthy peers to obtain robust recommendations. Recent research has shown [221, 588,
616] that the incorporation of trust information can lead to more robust recommendations.
Trustworthy recommender systems are presented in Chapter 11.

1.4.4.4 Leveraging Social Tagging Feedback for Recommendations

Users have numerous methods for incorporating their feedback in recommender systems.
The most common form of feedback is social tagging. Such forms of feedback are partic-
ularly common on content sharing sites on the Web, such as Flickr (photo sharing) [692],
last.fm [692] (music sharing), and Bibsonomy [708] (scientific literature sharing). Tags are
meta-data that users utilize to add short informative keywords to the content. For example,
a user on a music site might tag Michael Jackson’s Thriller album as “rock.” Such tags
provide useful information about the interests of both the user and the content of the item
because the tag is associated with both. The tags serve as useful context for performing
the recommendations. Methods for context-sensitive recommendations can be directly used
to incorporate this feedback into the recommendation process. Other specialized methods
have also been developed for using social tagging feedback in the recommendation process.
These methods are discussed in detail in Chapter 11.

1.5 Advanced Topics and Applications

This book will also introduce a number of advanced topics and applications. Most of the
these topics are discussed in Chapters 12 and 13, although some of the topics are spread
out over the book, where it is appropriate. In this section, we provide a brief introduction
to these topics.



24 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

1.5.1 The Cold-Start Problem in Recommender Systems

One of the major problems in recommender systems is that the number of initially avail-
able ratings is relatively small. In such cases, it becomes more difficult to apply traditional
collaborative filtering models. While content-based and knowledge-based methods are more
robust than collaborative models in the presence of cold starts, such content or knowledge
might not always be available. Therefore, a number of specific methods have been designed
to ameliorate the problem of cold start in the context of recommender systems. The sus-
ceptibility of various models to the cold-start problem is also highlighted throughout this
book, along with possible solutions.

1.5.2 Attack-Resistant Recommender Systems

The use of recommender systems has a significant impact on the sale of various products
and services. As a result, the sellers of products and services have significant economic
incentives to manipulate the output of recommender systems. One example of such a ma-
nipulation would be to submit inflated ratings of their own products to the recommender
systems. A malicious rival might submit biased and negative reviews about the products
of a competitor. Over the years, numerous sophisticated strategies have been developed for
attacking recommender systems. Such attacks are highly undesirable because they reduce
the overall effectiveness of the recommender system and reduce the quality of experience
for legitimate users. Therefore, methods are needed that enable robust recommendations in
the presence of such attacks. Attack methods, including the susceptibility of various types
of algorithms to attacks, are discussed in detail in Chapter 12. In addition, Chapter 12 will
provide a number of strategies for constructing robust recommender systems in the presence
of such attacks.

1.5.3 Group Recommender Systems

An interesting extension of traditional recommender systems is the notion of group recom-
mender systems [168]. In such cases, the recommendation system is tailored to recommend
a particular activity to a group of users rather than a single user. Examples might include
the watching of movie or television by a group [408, 653], the selection of music in a fitness
center, or the travel recommendations to a group of tourists. The earliest systems, such
as PolyLens [168], designed models that aggregated the preferences of individual users in
order to create group recommendations. However, the consensus over the years has evolved
into designing recommender systems, which are better than the sum of their parts and
can take the interactions between the various users into account for designing recommenda-
tions [272, 413]. Simple averaging strategies do not work well when groups are heterogeneous
and contain users with diverse tastes [653]. This is because users often have an impact on
each other’s tastes based on phenomena from social psychology, such as emotional conta-
gion and conformity. Detailed surveys on the subject may be found in [45, 271, 407]. Group
recommender systems are discussed in section 13.4 of Chapter 13.

1.5.4 Multi-Criteria Recommender Systems

In multi-criteria systems, ratings might be specified on the basis of different criteria by
a single user. For example, a user might rate movies based on the plot, music, special
effects, and so on. Such techniques often provide recommendations by modeling the user’s
utility for an item as a vector of ratings corresponding to various criteria. In multi-criteria



1.5. ADVANCED TOPICS AND APPLICATIONS 25

recommender systems, one can often obtain misleading results by using only the overall
rating in conjunction with a traditional recommender system. For example, if two users
have the same overall rating for a movie, but their component ratings for the plot and
music are very different, then the two users should not be considered similar from the
perspective of a similarity-based collaborative filtering algorithm. In some of the multi-
criteria systems, users may not specify an overall rating at all. In such cases, the problem is
even more challenging because it is needed to present ranked lists of items to various users
on the basis of multiple criteria. Excellent overviews of multi-criteria recommender systems
may be found in [11, 398, 604] from various perspectives.

It has been shown [271, 410], that some of the methods for group recommender systems
can also be adapted to multi-criteria recommender systems. However, the two topics are
generally considered different because they emphasize different aspects of the recommenda-
tion process. Methods for multi-criteria recommender systems are discussed in section 13.5
of Chapter 13.

1.5.5 Active Learning in Recommender Systems

A major challenge in recommender systems is the acquisition of sufficient ratings in order
to make robust predictions. The sparsity of the ratings matrix continues to be a significant
impediment in effective functioning of recommender systems. The acquisition of sufficient
ratings can reduce the sparsity problem. A variety of real-world recommender systems have
mechanisms to encourage users to enter ratings in order to populate the system. For exam-
ple, users might be provided incentives to rate certain items. In general, it is often difficult
to obtain too many ratings from the single user because of the high cost of the acquisition
process. Therefore, one must judiciously select the items to be rated by specific users. For
example, if a user has already rated a lot of action movies, then asking the user to rate
another action movie does not help much in predicting ratings of other action movies, and
it helps even less in predicting ratings of movies belonging to unrelated genres. On the other
hand, asking the user to rate movies belonging to less populated genres will help significantly
in predicting ratings of movies belonging to that genre. Of course, if a user is asked to rate
an unrelated movie, it is not necessary that she will be able to provide feedback because she
might not have watched that movie at all. Therefore, there are many interesting trade-offs
in the problem of active learning of recommender systems, that are not encountered in other
problem domains like classification. A review of active learning methods for recommender
systems may be found in [513]. Active learning methods are discussed in section 13.6 of
Chapter 13.

1.5.6 Privacy in Recommender Systems

Recommender systems are based heavily on feedback from the users, which might be implicit
or explicit. This feedback contains significant information about the interests of the user,
and it might reveal information about their political opinions, sexual orientations, and
personal preferences. In many cases, such information can be highly sensitive, which leads
to privacy concerns. Such privacy concerns are significant in that they impede the release
of data necessary for the advancement of recommendation algorithms. The availability of
real data is crucial for algorithmic advances. For example, the contribution of the Netflix
Prize data set to the recommender systems community is invaluable, in that it can be
credited with motivating the development of many state-of-the-art algorithms [373]. In
recent years, the topic of privacy has been explored in the context of a wide variety of



26 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

data mining problems [20]. The recommendation domain is no exception, and numerous
privacy-preserving algorithms have been developed [133, 484, 485]. The topic of privacy in
recommender systems is discussed in detail in section 13.7 of Chapter 13.

1.5.7 Application Domains

Recommender systems are used in numerous application domains, such as retail, music,
content, Web search, querying, and computational advertisements. Some of these domains
require specialized methods for adapting recommender systems. In particular, Chapter 13
will study three specific domains corresponding to news recommendations, computational
advertising, and reciprocal recommender systems. All these application domains are Web-
centric in nature. An important aspect of recommender systems is that they assume the
existence of strong user-identification mechanisms in order to track and identify long-term
user interests. In many Web domains, mechanisms for strong user identification may not
be available. In such cases, direct user of recommendation technology may not be feasi-
ble. Furthermore, since new items (advertisements) continually enter and leave the system,
certain types of methods such as multi-armed bandits are particularly suitable. Therefore,
Chapter 13 will discuss the scenarios in which recommendation technology can be used
in these application domains. The specific changes that need to be made to off-the-shelf
recommender systems will be discussed in this chapter together with advanced techniques
such as multi-armed bandits.

1.6 Summary

This book will provide an overview of the most important classes of algorithms for recom-
mender systems, their advantages and disadvantages, and the specific scenarios in which
they are most effective. The recommendation problem will be studied in the context of
different domain-specific scenarios and with different types of input information and knowl-
edge bases. As this book will show, the recommendation problem is a rich one, and has
many different manifestations depending on the nature of the input data and the scenario
at hand. Furthermore, the relative effectiveness of different algorithms may vary with the
specific problem setting. These trade-offs will also be explored by this book. In many cases,
hybrid systems can be developed, which exploit these trade-offs effectively.

A number of advanced topics, such as attack models, group recommender systems, multi-
criteria systems, active learning systems, will be studied in later chapters of this book.
We will also explore a number of specific applications, such as news recommendations and
computational advertising. It is hoped that this book will provide a comprehensive overview
and understanding of the different scenarios that arise in the field of recommender systems.

1.7 Bibliographic Notes

Recommender systems became increasingly popular in the mid-nineties, as recommendation
systems such as GroupLens [501] were developed. Since then, this topic has been explored
extensively in the context of a wide variety of models such as collaborative systems, content-
based systems, and knowledge-based systems. Detailed surveys and books on the topic may
be found in [5, 46, 88, 275, 291, 307, 364, 378, 505, 529, 570]. Among these, the work in [5] is
a very well written survey, which provides an excellent overview of the basic ideas. More re-
cent surveys may be found in [88, 378, 570]. A survey of the use of non-traditional sources of



1.7. BIBLIOGRAPHIC NOTES 27

information for recommendations, such as social, temporal, side information, or contextual
data, is provided in [544]. A recent classification of various facets of recommender system re-
search may be found in [462]. An excellent introductory book may be found in [275], whereas
a detailed handbook [505] discusses various aspects of recommender systems in detail.

The problem of collaborative filtering with incomplete ratings matrices is closely re-
lated to the traditional literature on missing data analysis [362], although the two fields
have often been studied independently. The earliest user-based collaborative filtering mod-
els were studied in [33, 98, 501, 540]. User-based methods utilize the ratings of similar users
on the same item in order to make predictions. While such methods were initially quite
popular, they are not easily scalable and sometimes inaccurate. Subsequently, item-based
methods [181, 360, 524] were proposed, which compute predicted ratings as a function of
the ratings of the same user on similar items. Another popular approach for making rec-
ommendations is the use of latent factor models. The earliest works in latent factor models
independently appear in the contexts of recommendation [525] and missing value analy-
sis [24]. Eventually, these methods were rediscovered as the most effective class of methods
for performing recommendations [252, 309, 313, 500, 517]. Aside from their use in factor-
based models, dimensionality reduction methods are also used to reduce the dimensionality
of the ratings matrix to improve the efficiency of the user-to-user or item-to-item similar-
ity in the reduced space [228, 525]. However, the work on missing data analysis is just as
relevant to the recommendation literature. Other relevant models for collaborative filtering
include the use of data mining models such as clustering [167, 360, 608], classification, or
association pattern mining [524]. Sparsity is a major problem is such systems, and various
graph-based systems have been designed to alleviate the problem of sparsity [33, 204, 647].

Content-based methods are closely related to the information retrieval literature [144,
364, 400], in which similarity retrieval methods are used in the recommendation process.
Text classification methods are also particularly useful in the recommendation process.
A detailed discussion on various text classification methods may be found in [22]. Some
of the earliest works on content-based recommendations are found in [60, 69]. The general
survey in [5] also discusses content-based recommendations quite extensively.

There are many cases in which collaborative and content-based methods are not useful
in obtaining meaningful recommendations because of the high degree of complexity and
constraints in the item space. In such cases, knowledge-based recommender systems [116]
are particularly useful. Demographic recommender systems are discussed in [320, 475, 508],
whereas utility-based recommender systems are discussed in [239]. An excellent survey on
explanations in recommender systems is provided in [598].

Different recommender systems are more effective in different types of settings. The
evaluation [246] of recommender systems is important in order to judge the effectiveness of
different algorithms. A detailed discussion of evaluation methods may also be found in [538].
Hybrid systems [117] can combine various recommender systems to obtain more effective
results. Furthermore, ensemble methods can also combine algorithms of the same type to
obtain more effective results. The top entries of the Netflix Prize contest, such as “The
Ensemble” [704] and “Bellkor’s Pragmatic Chaos,” [311] were both ensemble methods.

Recommender systems require specialized methods to make them more effective in a
wide variety of scenarios. A major problem in the effective use of such systems is the cold-
start problem, in which a sufficient number of ratings is not available at the beginning of
the recommendation process. Therefore, specialized methods are often used to address this
problem [533]. In many cases, the context of the recommendation, such as the location,
time, or social information, can significantly improve the recommendation process [7]. Each
of these different types of context has also been studied individually as a separate area of



28 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

recommender systems. Temporally-aware recommender systems have been studied in [310],
whereas location-aware recommender systems have been discussed in [26]. The social con-
text is particularly diverse because it allows for a wide variety of problem settings. One can
either recommend nodes or links in social networks, or one can recommend products with
the help of social cues. The first of these settings is closely related to the domain of social
network analysis [656]. Each of the traditional problems of ranking, node classification, and
link prediction [22, 656] can be viewed as a structural recommendation problem in social
networks. Furthermore, these forms of recommendation are useful beyond the social net-
work setting. Interestingly, methods such as link prediction can also be used for traditional
recommendation by transforming the user-item interactions into a bipartite graph struc-
ture [261]. A different form of social recommendation is the case where social cues are used
for performing recommendations [588]. The social network structure can also be directly
used in the context of viral marketing applications [297].

Since recommender systems often help the sale of products, the sellers of those products
or their competitors have significant motivations to attack recommender systems by manip-
ulating the ratings. In such cases, the recommendations are unlikely to be of high quality,
and therefore untrustworthy. In recent years, a significant amount of effort has been devoted
to the design of trustworthy recommender systems [444]. Various group recommender sys-
tems are discussed in [45, 271, 272, 407, 408, 412, 413, 415, 653]. Multi-criteria recommender
systems are discussed in [11, 398, 604]. Active learning methods are discussed in [513]. A gen-
eral discussion of privacy-preservation methods may be found in [20]. The earliest studies on
the topic of privacy-preserving recommendations were presented in [133, 451, 484, 485, 667].
Privacy continues to be a significant challenge to such systems because of the high dimen-
sional nature of the data. It has been shown in [30, 451] how the dimensionality can be
leveraged to make privacy attacks on different types of data sets.

1.8 Exercises

1. Explain why unary ratings are significantly different from other types of ratings in
the design of recommender systems.

2. Discuss cases in which content-based recommendations will not perform as well as
ratings-based collaborative filtering.

3. Suppose you set up a system, where a guided visual interface is used in order to
determine the product of interest to a customer. What category of recommender
system does this case fall into?

4. Discuss a scenario in which location plays an important role in the recommendation
process.

5. The chapter mentions the fact that collaborative filtering can be viewed as a gener-
alization of the classification problem. Discuss a simple method to generalize classi-
fication algorithms to collaborative filtering. Explain why it is difficult to use such
methods in the context of sparse ratings matrices.

6. Suppose that you had a recommender system that could predict raw ratings. How
would you use it to design a top-k recommender system? Discuss the computational
complexity of such a system in terms of the number of applications of the base
prediction algorithm. Under what circumstances would such an approach become
impractical?


