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1 Introduction

The World Wide Web (WWW) [1] emerged in the early 1990s, providing means
to publish and access documents online. The WWW is based on the Hypertext
Transfer Protocol (HTTP), used to transfer hypermedia documents between servers
and clients, and the Hypertext Markup Language (HTML), which is the standard
markup language for creating documents to be viewed in a Web browser. This allows
users and organizations to easily and instantly publish information and documents
on the Web. Since the beginning, a vast amount of information has been published
on the Web, covering any imaginable topic and domain. Currently, the Web contains
several billions of Web pages and several hundreds of billions of links between those
pages, and it continuously expands. To be able to cope with such a large amount
of data, especially being able to identify relevant information in it, Web mining
approaches are being used. Web mining is the process of performing data mining on
the Web, including Web documents, Web graph, and Web usage data. The main goal
of Web mining is to identify and extract relevant information and knowledge hidden
in Web data. Web mining approaches follow the standard knowledge discovery
process, which consists of five steps: data collection, preprocessing, transformation,
pattern discovery, and pattern analysis [2]. Web mining is a multidisciplinary
research area involving approaches and techniques from many other research areas,
e.g., databases, data mining, machine learning, information retrieval, information
extraction, natural language processing, statistics, etc.
Web mining is commonly divided into three sub-areas:
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1. Web Content Mining: The process of mining the content of the Web documents
in order to identify useful information, using data mining and machine learning.
This commonly includes mining unstructured or semi-structured text documents,
images, audio and video files extracted from Web documents.

2. Web Structure Mining: The process of mining the graph structure of the Web to
identify structural and connection information about the nodes in the graph. This
is usually done using graph theory and graph mining techniques.

3. Web Usage Mining: The process of mining the Web server logs, in order to
extract patterns and information about the user interactions with the Web servers
of one or more Web sites.

There are several textbooks [3, 4, 5] that cover Web mining in details, as well
as several surveys [6, 7, 8, 9]. For surveys on Web content mining, we refer to
[10, 11, 12, 13], surveys for Web structure mining can be found in [14, 15, 16], and
surveys for Web usage mining can be found in [17, 18, 19, 20, 21].

An additional sub-area of Web mining is Semantic Web mining, which is
concerned with the application of Web mining approaches for the Semantic Web.
The Semantic Web is an extension of the standard Web in which data is structured
using well established formats and technologies, making it machine-readable and
machine-understandable [22]. For surveys on Semantic Web mining, we refer to
[23, 24, 25, 26, 27, 28, 29].

The remaining of the chapter is organized as follows. Section 2 gives an
introduction to the graph structure and properties of the Web. Section 3 gives an
overview of approaches used for text mining and information extraction on the Web.
Section 4 surveys approaches for Web structure mining for information retrieval and
social network analysis. Section 5 gives an overview of Web usage mining and query
log mining approaches. Finally, Sect. 6 gives an introduction to Semantic Web and
Semantic Web Mining.

2 The Graph Structure of the Web

The Web is a network, or a directed graph, where the documents are the nodes
and the hyperlinks between the documents are the edges of the graph. The
graph structure carries important information about the Web documents and the
information contained in them, thus the Web structure becomes crucial for Web
mining. As shown by Hall et al. [30], the Web and the underlying Web graph are
evolving throughout time. The Web started as a collection of documents, also known
as “the Web of documents,” when in the 2000s the users started to be more involved
and chaining the Web to “the Web of people,” evolving to the present state called
“the Web of data and social networks.”

Throughout the years, many studies have tried to analyze the structure and the
properties of the continuously evolving Web graph. One of the biggest challenges
for analyzing the whole Web graph and Web mining, in general, is downloading the
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whole Web. To do so, there are special systems called Web crawlers, also known as
robots or spiders, which are able to download Web pages in bulk. The architecture
of a Web crawler is quite simple, i.e., given a set of seed Uniform Resource Locators
(URLs), the crawler downloads and indexes the corresponding Web pages, then
extracts the outgoing hyperlinks from those pages and iteratively downloads the new
Web pages. The process continues until no new hyperlinks are discovered. While
the algorithm looks trivial, there are many challenges to build an efficient crawler
that can capture a significant portion of the Web and keep it up to date [31]. Many
different approaches and strategies have been proposed for broad crawling of the
Web [31, 32, 33], as well as focused crawls [34, 35], which focus on downloading
Web pages that cover a certain topic.

Several broad crawls have been used to perform in-depth analysis of the whole
Web graph. The first analysis on the whole Web was performed by Broder et al.
[36]. They used two AltaVista crawls from 1999, each with more than 200 million
URLSs and 1.5 billion links. The main finding of this work was that the Web is
structured as a giant bow tie, with a Strongly Connected Core component (SCC)
of 56 million pages in the middle, and two side components with 44 million pages
each. The side components are called IN and OUT, where IN consists of pages that
can reach the SCC but cannot be reached from it; while OUT consists of pages that
are accessible from the SCC but do not link back to it. Furthermore, an additional
component called TENDRILS contains pages that cannot reach the SCC and cannot
be reached from the SCC. The analysis on the whole graph showed that the diameter
of the central core (SCC) is at least 28, and that the diameter of the graph as a whole
is over 500. The bow tie structure describes a macroscopic structure of the Web.
Donato et al. [37] study the inner part of the bow tie structure, revealing that each
component actually has a significantly different structure and propose replacing the
bow tie structure with a daisy structure, where the IN and OUT components are
attached like petals to the core SCC. A similar study by Jonathan et al. [38] suggest
that the structure of the Web is more like a teapot than a bow tie, indicating that the
IN component is much bigger than the OUT component. However, later research
show that most of these findings heavily depend on the crawl and the crawling
process [39, 40, 41]. Given these new findings Meusel et al. [41, 42] and Lehmberg
et al. [43] perform analysis on a 2012 crawl from the Common Crawl Foundation,
which contained 3.5 billion Web pages and 128 billion links. The analysis confirmed
the existence of a giant connected core component; however, there are different
proportions of nodes that can reach or that can be reached from the giant component,
suggesting that the bow tie structure is dependent on the crawling process and is not
a structural property of the Web. Furthermore, the analysis shows that the graph has
a diameter of at least 5282. Such studies confirm that the Web continuously evolves,
and it is not trivial to analyze the whole structure of the Web graph but remains
crucial for successful Web mining.

Uhttp://commoncrawl.org/.
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3 Web Content Mining

Web content mining approaches extract or mine useful information and knowledge
from Web documents. Although there are means to publish structured data (see
Sect. 6), most of the data published on the Web remains in unstructured format,
i.e., text. To be able to extract useful knowledge from the vast amount of text
data published on the Web, text mining approaches are used [44, 45, 46]. This
includes: information retrieval, document classification, information extraction,
text generation, text summarization, opinion mining and sentiment analysis. Web
content mining includes image, video, and multimedia processing as well; however,
the main focus of Web content mining is text mining, therefore in this chapter we
focus only on text mining.

Information Retrieval Information retrieval is the study concerned with represent-
ing, searching, and manipulating large collections of text [49]. As mentioned in the
introduction, one of the biggest challenges for consuming the Web is identifying
the small pieces of relevant information in the vast amount of data published on the
Web. To do so, Web search engines are being used. Search engines allow the users
to enter a set of keywords or a query, for which the engine will return a ranked list
of Web pages relevant for the query. Some of the most popular search engines are
Google, Bing, Yahoo Search, Yandex, and Baidu. Web search engines can be seen
as traditional information retrieval system working on Web data [47, 48].

Search engines consist of 3 main components: crawl, index, and search. Crawling
is the process of downloading Web documents in bulk, as explained in Sect. 2.
Indexing is the process of efficiently and effectively storing the crawled Web pages
in a structure that would allow efficient retrieval of the Web pages. Searching is the
process of matching the user query with the indexed Web pages and retrieving the
matched results ordered by relevance.

Once all the Web documents are collected, before the documents are passed
to the indexer, the documents go through a document pre-processor. This usually
includes: lexical analysis (including tokenization and token normalization), token
weighing, stopword removal, stemming, phrase processing, and hyperlinks pro-
cessing [50, 51]. After this step, each Web document is represented as a set of
search terms (tokens or a set of tokens) with meta data for each token. There
are several information retrieval models or document representation techniques
used, starting from the more trivial Boolean and the vector space models [52], to
more sophisticated probabilistic and language models [53, 54]. Web documents are
indexed in an index structure, such as inverted index structure. For every search
term the inverted index contains a list of Web documents that contain that search
term. This allows the search engine to quickly identify all documents that contain
a term from a user query. For a survey of more sophisticated indexing techniques
we refer to the survey by Gani et al. [55]. During the indexing, usually terms are
assigned relevance weight, which indicates the importance of the term in the current
document. One of the most used term weighing techniques is term frequency—
inverse document frequency (tf-idf).
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Once the index is built, the search engine can process user queries. Usually
the user queries consist of one or several search terms. When the user query is
received, the search engine first pre-processes the query using the same pipeline
used to pre-process the documents for indexing. Then, for each of the search terms
the relevant documents with their weights are retrieved from the inverted index.
Finally, for each retrieved document a rank score is calculated using a relevance
ranking function. Relevance ranking functions usually consist of 2 parts: (i) content
document relevance score based on the matched terms, which depends on the used
retrieval model; (ii) document relevance score based on the graph structure (see
Sect. 4). There are many content relevance ranking functions, e.g., cosine similarity,
BF25 [56], relevance based on language models [53, 57], or using machine learning
for information retrieval, called learning to rank [58]. Learning to rank is the task
to automatically construct a ranking machine learning model using training data,
such that the model can sort new objects according to their degrees of relevance,
preference, or importance [59]. Commercial search engines use combinations of
many relevance functions in order to get the best results. In many cases the user
query might be very narrow and the search will not return any relevant results. To
alleviate this problem, a query expansion approaches are used. Query expansion
approaches modify the input query by adding additional search terms with similar
semantic meaning [60, 61, 62].

While standard Web search engines deal only with keyword-based queries, with
the advances of machine learning and knowledge representation, many systems now
offer natural language question answering. In such systems, the users can ask a
question in a natural language form, which the system then processes and matches
to the internal knowledge, and produces an answer in natural language format. Many
Web sites adapt such systems to develop chatbots and conversational assistants to
ease the interaction with the users [63, 64]. With the rapid advancements of deep
machine learning and knowledge graphs (see Sect. 6), such systems are becoming
more popular [65, 66].

Document Classification Document classification is the task of sorting documents
into a given set of categories. Categorizing Web documents into a predefined
taxonomy made searching and browsing the Web easier [67]. The Open Directory
Project (DMOZ) was the first Web topic directory that organized Web pages
in a hierarchical ontology. Such categorization was used by search engines to
improve the search results. While today such topic directories do not play big
role in the search engine ranking, Web document classification is crucial for
organizing and maintaining content on the Web. There are many supervised machine
learning approaches for document classification, e.g., Naive Bayes, Support Vector
Machines, Logistic Regression, Decision Trees, etc. With the advance of word
embeddings (e.g., word2vec [68], GloVe [69]) and deep learning approaches (e.g.,
CNN [70], RNN [71], LSTM [72], BERT [73]) document classification achieves
even better results.

When the set of categories is not known upfront, unsupervised methods can be
used, such as clustering [74] and topic modeling [75].
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Information Extraction Information extraction approaches automatically extract
structured information from unstructured or semi-structured text. Some of the
typical tasks in web information retrieval include named entity recognition (e.g.,
identifying mentions of people, places, organization, products, etc.) and relationship
extraction between such named entities [76]. Named entity recognition is one of
the most important tasks of natural language processing, and therefore there is
a plethora of work in the literature [77, 78, 79]. Approaches range from simple
techniques using external vocabularies and knowledge bases [80], unsupervised
methods [81, 82], sophisticated supervised solutions with advanced feature engi-
neering based on Hidden Markov Models [83], Conditional Random Fields [84]
and Support Vector Machines [85], and lately advanced deep neural networks
[86, 87, 88, 89, 79].

Once the named entities are identified in text, usually the next task is to identify
the relation between them. Popular systems for relation extraction range from early
solutions based on SVMs and tree kernels [90, 91, 92, 93, 94] to most recent
ones exploiting neural architectures [95, 96, 97]. Many approaches exploit large
knowledge bases for distant supervision [98, 99, 100, 101, 102], as well as human-
in-the-loop approaches [103]. Furthermore, several works have tackled the problem
of open information extraction [104, 105, 106] where the focus is on general
understanding of text rather than a focused extraction of named entities and specific
relations. Furthermore, recent deep neural network approaches solve both tasks of
named entity recognition and relation extraction as a single task [107].

In most Web sites, the Web pages are dynamically generated using similar
templates, using data from the same database. Wrapper induction approaches use
supervised machine learning approaches to learn patterns and rules for generating
dynamic Web pages in order to automatically extract structured information from
them [108, 109].

Besides mining unstructured text from the Web, a lot of work goes into mining
semi-structured data, such as lists and tables. WebTables was the first project to
extract content tables from the whole Web [110, 111]. The project shows how
to extract useful information from Web tables, such as entities, attributes, and
relations between entities, which can be used in different applications. Several
approaches have been introduced for parsing and semantically annotating Web
tables [112, 113, 114], which then can be used for improved search [115], query
table extension [116, 117, 118] and knowledge base completion [119, 120]. One
survey of recent approaches for Web table mining can be found in [121].

Text Generation and Summarization While text generation was introduced in
the early 1990s [122], it became more popular in the recent years with the advance
of neural networks [123]. Currently, generative adversarial neural networks with
reinforcement learning [122, 123, 124, 125] and transformer-based neural networks
[126] show state-of-the-art results. Such systems have been successfully used
in many applications: generating product descriptions [127], generating product
reviews [128, 129], weather forecast [130], and many others. Such systems change
the way new content is being created and published to the Web.
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On the other hand, text summarization approaches try to shorten existing text
documents. Such approaches generate a concise summary of large texts, focusing
on the pieces of text that provide the most useful information without losing the
overall meaning [131]. While in the past most of the approaches were based on
topic words, frequencies, and latent semantic analysis, in the recent years seg2seq
neural networks [132] have become state-of-the-art solution [133]. Such systems
allow users to faster identify and consume relevant information on the Web.

Opinion Mining and Sentiment Analysis Web users use the available content
from social media platforms, forums, and blogs for their decision making, e.g., the
decision to buy a product offered on an e-shop heavily depends on the product
reviews written by other users. Thus, it is crucial to be able to automatically
identify the opinion and sentiments in user generated text on the Web. Since 2000,
sentiment analysis has grown to be one of the most important research areas in
natural language processing. Thus, plethora of approaches for opinion mining and
sentiment analysis have been proposed [134, 135, 136].

Similar to opinion mining and sentiment analysis approaches, social media
mining approaches [137] identify patterns and trends from textual data published on
social media, which later can be used in different applications. The most common
use of social media mining is for advertising, i.e., identifying the user’s interests
based on the content they generate to identify the best advertisements for them.
Besides advertisement, social media mining has been used for identifying incidents
and crisis in real time [138, 139, 140, 141], sports analysis, political analysis, trends,
and more [142]. An interesting problem in social media mining is identifying fake
news [143], which with the advance of generative neural networks becomes a real
problem.

4 Web Structure Mining

As described in Sect. 2, the Web is a directed graph, which structure intrinsically
carries important information about Web pages and the type and the quality of data
in them. Using graph theory and graph mining approaches such information can
be extracted and used in different applications, such as information retrieval and
different social network analysis on the whole Web graph or separate Web sites.

Information Retrieval Early Web information retrieval systems used only the
content Web data to retrieve the most relevant Web pages for a given user search
query, as shown in Sect. 3. However, with the fast growth of the Web, the size of
returned search results for any search query became rather large. Analyzing a large
number of search results is not convenient for the users and it is costly. To cope
with the large amount of Web pages, Web information retrieval systems started
using the Web graph structure to identify the popularity of the Web pages. Such
a popularity score is then used in the relevance ranking function in information
retrieval systems. The popularity score of a Web page is calculated directly from
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the Web graph structure, i.e., by examining how many hyperlinks point to the Web
page and the popularity of the Web pages pointing to it. One naive solution is to use
the number of incoming links to the Web page, also known as in-degree of the Web
page, as a popularity score. However, this score can easily be manipulated by setting
hyperlinks to Web pages that are not relevant, known as spamming, which would
significantly decrease the performance of the search engines. In 1998 and 1999,
the two most important Web page ranking algorithms were introduced, PageRank
[144, 145] and HITS [146]. Both of these algorithms originate from social network
analysis [147, 148].

The HITS (hyperlink-induced topic search) algorithm [146], also known as hubs
and authorities, was introduced by Kleinberg in 1999. For a given search query, the
algorithm identifies two types of Web pages: (i) authorities are pages that contain
relevant information for the query; (ii) hubs are pages that contain hyperlinks to
good sources. The main idea of HITS is that there is a mutual reinforcement
relationship between authorities and hubs, i.e., good hubs link to many good
authorities, and a good authority is linked to by many good hubs. Given a search
query, the algorithm first extends the set of search result pages by adding all the
pages that point to any of the pages in the result list, or pages that are pointed to
by any of the pages in the result list. In the next step, each page in the expanded
list is assigned authority score and a hub score. The authority score of a Web page
is calculated as the sum of the hub scores of all Web pages pointing to it. The hub
score of a Web page is calculated as the sum of the authority scores of all Web
pages that the current page is pointing to. The scores are computed iteratively, and
after each iteration the values are normalized between O and 1. Kleinberg proved
that the algorithm will always converge within couple of iteration, which has been
shown many times in practical experiments. While the algorithm has shown great
performance to identify relevant pages for a given query, the algorithm has two
main drawbacks that make it unusable in modern search engines: (i) it is sensitive to
spamming, i.e., the hub score can be manipulated by adding a lot of outgoing links
to good authorities; (ii) the scores are query specific and must be calculated during
the search, which significantly increases the search time.

On the other hand, PageRank [144, 145] is a static Web page ranking algorithm,
i.e., the PageRank value for each Web page in the Web graph is calculated offline
and it is not query dependent. The PageRank algorithm was introduced by Brian and
Page in 1988 and it is used in the popular Google Search. The underlying assumption
of PageRank is similar to the one of HITS, i.e., more important Web pages are more
likely to be linked to buy more important Web pages. The PageRank of a Web page
is calculated as the sum of the PageRank values of all the Web pages pointing to
it, where the PageRank value of each Web page is divided by the total number of
links going out of that page. Furthermore the algorithm introduces a damping factor,
which simulates the probability of a random surfer continuing to click on links as
they browse the Web. Then the PageRank value of a Web page A is calculated as:
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PR(A) = % +d Yy PRE) (1)

where d is the damping factor, which is set between 0 and 1, N is the total number
of pages in the Web graph, and Op is the number of outgoing links for any Web
page B that links to A. The PageRank value is calculated iteratively.

The main strengths of the PageRank algorithm are being query independent and
unaffected by spam. Although Google Search currently uses many other signals
and features for ranking Web pages, it is noteworthy that even after many years
of existence, PageRank is still being used in Google Search. There are several
extensions of the PageRank algorithm. Xing and Ghorbani proposed the weighted
PageRank algorithm [149], which takes into account the importance of both the
incoming and the outgoing links of the pages and distributes rank scores based on
the popularity of the pages. Li and Liu introduce the TS-Rank algorithm [150] to
address the issue of assigning low PageRank scores to new Web pages, which might
contain high quality content.

Social Network Analysis Social network analysis is the study of social entities,
such as people, organizations, groups, Web pages, or any knowledge entities, and
the relationships between them [147, 148]. Such analysis can infer interesting
properties, roles, and relationships between nodes or group of nodes in the network.
For example, HITS and PageRank are being used for identifying the popularity of
different Web pages in the whole Web graph. An important social network study is
community detection in networks [151]. A community represents a group of entities
that cover a same topic, share a same interest, or are involved in an event. Identifying
such communities can give interesting insights on the structure of the network and
the function of different communities, which could be used in various applications,
e.g., topic-based content clustering, recommender systems, advertising, etc. Several
approaches have been proposed for community identification on the whole Web
[152, 153], to identify different clusters of Web pages. However, most of the recent
approaches focus on community detection in social media platforms on the Web,
which connect millions of users and groups [154, 155].

With the advance of deep learning and representation learning in the recent
years, network representation learning approaches are introduced [156]. Network
representation learning approaches learn latent, low-dimensional representation
of network nodes, while preserving the network structure and node content and
attributes. Such representation of nodes in a network can be used in many social
network analysis on the Web, such as classification [157, 158], link prediction [159],
clustering [160], recommender systems [161], visualization [162], and search [163].
Several recent surveys give an overview of such approaches and their applications
on different networks on the Web [156, 164, 165].
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Web usage mining is the process of identifying and analyzing patterns in Web
server logs, including clickthrough, clickstream, user transactions, and other data
about user interactions with the Web server, which are then used to improve the
performance of different services on the Web [17, 166]. The main data source for
Web usage mining are server logs, which include web server logs and application
server logs. From such data, information about each visit and interaction with
the Web server is recorded. The first step of web usage mining is processing the
raw log files and extract structured information [167], which typically includes:
(1) user identification—identifying all actions that belong to the same user; (ii)
Pageview identification—identifying which Web pages are being visited including
the attributes of the Web pages; (ii1) Sessionization—identifying a set of pages
visited by the same user over one visit to a Web site; (iv) Episode identification—
identifying a set of Web pages visited by the user that are semantically or
functionally related. In the next step, these data are transformed into a data model,
which can be used in different data mining algorithms to identify useful patterns
from the log files. There are several common mining approaches used for improving
the content, structure, and design of Web sites, including session and user analysis,
which gives basic visit and popularity statistics of different Web pages within a Web
site; classification and clustering of users to identify user communities (see Sect. 4);
identifying associated Web pages, or products and services that are commonly
bought together, using association rule mining. More advanced applications of Web
usage mining involve recommender systems on the Web, and applications of query
log mining.

Recommender Systems Recommender systems are machine learning models that
predict a rating score or a binary preference a user would give to an item [168].
Recommender systems are the core component of every e-commerce Web site,
used for recommending products and services to users based on their preferences,
interests and previous interactions with the Web site. Since the performance of
the recommender systems directly affects the success and the profit of e-shops,
plethora of approaches have been proposed in the literature [169, 170]. There are
three general types of recommender systems: (i) Collaborative filtering methods
recommend items that are liked/bought by users with similar interests and similar
past behavior as the current user; (ii) Content-based filtering methods use content
attributes of the liked/bought items to recommend similar items to the users; (iii)
Hybrid recommender systems combine collaborative and content-based filtering
methods to achieve better performance and circumvent the drawbacks of the two
when used separately.

Query Log Mining Query Log Mining (QLM) is a special type of Web usage
mining [17], focused on mining log files from Web search engines. QLM techniques
are used in variety of applications [171, 172], predominantly being used to improve
the ranking and the runtime efficiency of search engines. For example, QLM
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approaches can be used to discover patterns and knowledge that can be used for
future query refinement and expansion [173], personalized query recommendation
and suggestion [174, 175], resolving ambiguity and intent [176], and removing
spam. Another important application of QLM is in search advertising, also known as
sponsored search, where QLM methods are being used to deliver the best matching
advertisements to the users based on their search queries and preferences, thus
maximizing the revenue of the search engines [177, 178]. Contextual advertising
is another type of advertising, which tries to match ads with the context displayed
in the current Web page [177], for which methods from Web content mining and
Web usage mining are used. Furthermore, search queries can be seen as signals in a
domain over time and can be represented as time-series. Thus, time-series analysis
approaches can be applied on query logs to identify new trends, events, interests,
and preferences [179], e.g., political events [180] or virus epidemics [181].

6 The Semantic Web and Semantic Web Mining

While the current Web is intended to be human readable, the Semantic Web provides
a common framework that allows data to be shared and reused across application,
enterprise, and community boundaries. Semantic Web technologies facilitate build-
ing a large-scale Web of machine-readable and machine-understandable knowledge
and thus facilitate data reuse and integration. The basics of the Semantic Web were
set by Tim Berners-Lee in 2001 [22], which later lead to the creation of the Linked
Open Data [182].% Linked Open Data (LOD) is an open, interlinked collection of
datasets on the Web in machine-interpretable form, covering many domains [183].
Currently, more than 1000 datasets are interlinked in the Linked Open Data cloud.’
Since the beginning, the Semantic Web has promoted a graph-based representation
of knowledge, e.g., using the Resource Description Framework (RDF).* In general,
RDF is a framework which provides capabilities to describe information about
resources. The core structure of RDF is a set of triples, each consisting of a subject,
a predicate, and an object, e.g., db:Berlin dbo:capitalOf db:Germany represents a
triple. A set of such triples is called an RDF graph. The term used to describe such
RDF graphs has been evolving through the years, i.e., in the beginning they were
called Ontologies [184], while currently are known as Semantic Web Knowledge
Graphs or simply Knowledge Graphs [185].

In the last decade, a vast amount of approaches have been proposed which
combine methods from data mining and knowledge discovery with Semantic Web
knowledge graphs. The goal of those approaches is to support different data mining
tasks, or to improve the Semantic Web itself. All those approaches can be divided

2 https://www.w3.org/DesignIssues/LinkedData.html.
3 https://lod-cloud.net/.
4 https://www.w3.org/RDF/.
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into three broader categories [28, 29]: (1) Using machine learning techniques to
create and improve Semantic Web data; (i1) Using data mining techniques to mine
the Semantic Web, also called Semantic Web Mining; (iii) Using Semantic Web
based approaches, Semantic Web Technologies, and Linked Open Data to support
the process of knowledge discovery and data mining.

In the very beginning, a lot of effort was put into building the Semantic Web and
Semantic Web datasets, which required use of data mining and machine learning,
e.g., extracting structured data from text or Web pages, which is also known as
ontology learning [23, 24]. Semantic Web mining became very popular, allowing
for formal querying and reasoning over ontological knowledge bases [25, 26, 27].
Because of its structured nature, Semantic Web data has been heavily used as a
background knowledge in various machine learning tasks and applications [28, 29].
With the rapid development of deep learning the most popular consumption of
Semantic Web Knowledge graphs in data mining is by using Knowledge Graph
Embeddings [186, 187]. Such algorithms embed the entities and relations, in
some cases even bigger components, into a continuous vectors space, where
each component is represented with an n-dimensional vector while preserving the
information and structure from the graph. Such representation allows easy use of
the knowledge graph in various tasks and applications [188, 189].

Besides Linked Open Data and Semantic Web Knowledge Graphs, semantic
annotations in HTML pages are another realization of the Semantic Web. Se-
mantic annotations are integrated into the code of HTML pages using one of
the four markup languages Microformats,> RDFa,® Microdata’ and JSON-LD.3
Such markup languages extend the standard HTML markup with additional set of
attributes and can be automatically recognized, e.g., by a machine. Such semantic
annotations are used by search engine companies, such as Bing, Google, Yahoo!,
and Yandex. They use semantic annotations from crawled Web pages to enrich the
presentation of search results and to complement their knowledge bases [190]. There
are several initiatives to extract such data from the whole Web and make it publicly
available, such as the Web Data Commons.” Such data has been used in many
e-commerce applications, such as product matching and product categorization
[191, 192, 193].

> http://microformats.org/.

6 https://www.w3.org/TR/rdfa-core/.

7 https://www.w3.org/TR/microdata/.
8 https://www.w3.org/TR/json-1d11/.

? http://webdatacommons.org/.
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