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Introduction

• Universal adversarial perturbations are quasi-imperceptible
perturbations designed to fool deep neural networks.

• These perturbations are image-agnostic, meaning a single
perturbation can cause misclassification across a wide range of
images.
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Perturbed Images
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Perturbation Algorithm
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Perturbation Vector v
• Given:

• µ: Distribution of images in Rd .
• k̂: Classification function providing labels for each x ∈ Rd .

• Seek vector v such that:

k̂(x + v) ̸= k̂(x) for most x ∼ µ

• Formally, find v that satisfies the constraints

∥v∥p ≤ ξ, Px∼µ

(
k̂(x + v) ̸= k̂(x)

)
≥ 1− δ

• Parameters:
• ξ: Magnitude of perturbation v .
• δ: Fooling rate threshold.
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Perturbation Algorithm - Optimization

• If current universal perturbation v does not fool data point xi ,
seek the extra perturbation ∆vi

∆vi ← argmin
r
∥r∥2 s.t. k̂(xi + v + r) ̸= k̂(xi )

• Update rule:
v ← Pp,ξ(v +∆vi )

• Projection operator Pp,ξ:

Pp,ξ(v) = argmin
v ′
∥v − v ′∥2 s.t. ∥v ′∥p ≤ ξ
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Algorithm End

• Algorithm iterates until:

Err(Xv ) =
1

m

m∑
i=1

1k̂(xi+v )̸=k̂(xi )
≥ 1− δ

• The number of datapoints m in X need not be large to compute
a perturbation that is valid for the whole distribution!
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Results

11 / 23



Generalization across Data Points

• High fooling rates on set X as well as validation set (not used for
computing v).
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Generalization across Architectures

• Cross-model universality: Perturbations generalize well across
different architectures!
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Explaining the Vulnerability to Universal
Perturbations
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Comparing Perturbations
• Random perturbations.

• Adversarial perturbations computed for a randomly picked sample
• Sum of adversarial perturbations over X .
• Mean of the images (ImageNet bias).

• Suggests that decision boundaries of deep networks exhibit
geometric correlations.
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Matrix N

• For each image x in the validation set, compute the adversarial
perturbation vector:

r(x) = argmin
r
∥r∥2 s.t. k̂(x + r) ̸= k̂(x)

• r(x) is normal to the decision boundary of the classifier at
x + r(x).

• Define the matrix N, containing normalized vectors r(xi ), as:

N =
[

r(x1)
∥r(x1)∥2

r(x2)
∥r(x2)∥2 · · · r(xn)

∥r(xn)∥2

]
• Compute the singular value decomposition (SVD) of N

N = UΣV T
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Singular Values

• Singular values of N decay quickly

• Suggests that a low-dimensional subspace captures most normal
vectors to decision boundaries.
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Low Dimensional Subspace
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Conclusion & Discussion
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Conclusion

Universal adversarial perturbations

• Exist for deep neural networks.

• Can generalize across images and different architectures.

• Decision boundaries show geometric correlations, allowing
perturbations to exploit redundancies.

Future work

• A deeper theoretical analysis of the geometric properties of
decision boundaries is needed to better understand these
vulnerabilities.
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Why?

How come adversarial perturbations exist for neural networks, and not
for humans?

• Do humans have better ’training data’?

• Is the human brain just bigger in scale?

• Or is the way humans perceive images fundamentally different?
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Bluesky

• There are many interesting people on Bluesky!

• Explore starter packs across Machine Learning, AI, and
Economics
• Machine Learning - Theory
• ML & Probabilistic Stuff
• Economists Working on AI
• ’ML/AI People’
• List of over 50 Econ Starter-Packs by Field
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https://bsky.app/starter-pack/marcelhussing.bsky.social/3lamfdrf4qu2i
https://bsky.app/starter-pack/alexxthiery.bsky.social/3lbcyftagtj2a
https://go.bsky.app/DfnDyqb
https://bsky.app/profile/clem.hf.co/post/3lcar5mjjet2j
https://docs.google.com/spreadsheets/d/e/2PACX-1vRtnBmpSRrRy7ROXIqLdu9cgLYGYb3SzqQ92r0D0BB150jf3D4v48byeg64xDEo3CAHe8N9z-162Bv0/pub?output=pdf
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