Universal Adversarial
Perturbations

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, Pascal Frossard
Presented by Maximilian Reith

December 3, 2024

1/23



Contents

. Introduction
. Perturbation Algorithm

1
2
3. Results
4.

Explaining the Vulnerability to Universal
Perturbations

5. Conclusion & Discussion

6. Bluesky

2/23



Introduction

3/23



Introduction

® Universal adversarial perturbations are quasi-imperceptible
perturbations designed to fool deep neural networks.
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Introduction

® Universal adversarial perturbations are quasi-imperceptible
perturbations designed to fool deep neural networks.

® These perturbations are image-agnostic, meaning a single
perturbation can cause misclassification across a wide range of
images.
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Perturbed Images
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carousel grey fox macaw threa-toed sloth ‘macaw
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Figure 3: Examples of perturbed images and their corresponding labels. The first 8 images belong to the ILSVRC 2012
validation set, and the last 4 are images taken by a mobile phone camera. See supp. material for the original images.
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Perturbations

(d) VGG-19 (e) GoogleNet (f) ResNet-152

Figure 4: Universal perturbations computed for different deep neural network architectures. Tmages generated with p =
& = 10. The pixel values are scaled for visibility.
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Perturbation Algorithm
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Perturbation Vector v

® Given:
® ;i Distribution of images in RY.
® k: Classification function providing labels for each x € R9.
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Perturbation Vector v

® Given:
® ;i Distribution of images in RY.
® k: Classification function providing labels for each x € R9.

® Seek vector v such that:

k(x +v) # k(x) for most x ~

® Formally, find v that satisfies the constraints

HV”PSé.v way (ll%(X—FV)#/;(X)) > 1—9

® Parameters:

® ¢: Magnitude of perturbation v.
® §: Fooling rate threshold.
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Perturbation Algorithm - Optimization

® If current universal perturbation v does not fool data point x;,
seek the extra perturbation Avy;

Av; « argmin||r]l2 s.t. k(xi+ v+ r) # k(x;)
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Perturbation Algorithm - Optimization

® If current universal perturbation v does not fool data point x;,
seek the extra perturbation Avy;

Av; « argmin||r]l2 s.t. k(xi+ v+ r) # k(x;)

e Update rule:
v Ppe(v+ Ay)

® Projection operator Pp ¢:

Ppe(v) =argmin|lv — V[l st [|V][, <¢
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Algorithm End

® Algorithm iterates until:

m

1

Err(X) =1, 2 LiGornshen 210
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Algorithm End

® Algorithm iterates until:

m

1

Err(X,) = — 2 Lo tv)sh) = 10

® The number of datapoints m in X need not be large to compute
a perturbation that is valid for the whole distribution!
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Results
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Generalization across Data Points

CaffeNet [8] | VGG-F[2] | VGG-16[17] | VGG-19 [17] | GoogLeNet [18] | ResNet-152 [6]
¢ X 85.4% 85.9% 90.7% 86.9% 82.9% 89.7%
2| val. 85.6 87.0% 90.3% 84.5% 82.0% 88.5%
P) X 93.1% 93.8% 78.5% 77.8% 80.8% 85.4%
1 val. 93.3% 93.7% 78.3% 77.8% 78.9% 84.0%

Table 1: Fooling ratios on the set X, and the validation set.

® High fooling rates on set X as well as validation set (not used for

computing v).
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Generalization across Architectures

VGG-F | CaffeNet | GoogLeNet | VGG-16 | VGG-19 | ResNet-152
VGG-F 93.7% | 71.8% 48.4% 42.1% 42.1% 47.4 %
CaffeNet 74.0% | 93.3% 47.7% 39.9% 39.9% 48.0%
GoogLeNet | 46.2% | 43.8% 78.9% 39.2% 39.8% 45.5%
VGG-16 63.4% | 55.8% 56.5% 78.3% 73.1% 63.4%
VGG-19 64.0% | 57.2% 53.6% 73.5% 77.8% 58.0%
ResNet-152 | 46.3% | 46.3% 50.5% 47.0% 45.5% 84.0%

Table 2: Generalizability of the universal perturbations across different networks. The percentages indicate the fooling rates.
The rows indicate the architecture for which the universal perturbations is computed, and the columns indicate the architecture
for which the fooling rate is reported.

e Cross-model universality: Perturbations generalize well across
different architectures!
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Explaining the Vulnerability to Universal
Perturbations
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Comparing Perturbations

® Random perturbations.
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Comparing Perturbations

Random perturbations.

Adversarial perturbations computed for a randomly picked sample
Sum of adversarial perturbations over X.

Mean of the images (ImageNet bias).
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Figure 8: Comparison between fooling rates of different
perturbations. Experiments performed on the CaffeNet ar-
chitecture.

® Suggests that decision boundaries of deep networks exhibit

geometric correlations.
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Matrix N

® For each image x in the validation set, compute the adversarial
perturbation vector:

r(x) = argmin|rll2 s.t. k(x +r) # k(x)
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Matrix N

® For each image x in the validation set, compute the adversarial
perturbation vector:

r(x) = argmin|rll2 s.t. k(x +r) # k(x)

® r(x) is normal to the decision boundary of the classifier at
x + r(x).
e Define the matrix N, containing normalized vectors r(x;), as:

L) o))
N —[nr(xnuz GEIE Hr(Xn)Ilz]

e Compute the singular value decomposition (SVD) of N

N=UzVvT
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Singular Values
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Figure 9: Singular values of matrix V' containing normal
vectors to the decision decision boundary.

® Singular values of N decay quickly
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Singular Values
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Figure 9: Singular values of matrix /V containing normal
vectors to the decision decision boundary.

® Singular values of N decay quickly
® Suggests that a low-dimensional subspace captures most normal
vectors to decision boundaries.
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Low Dimensional Subspace

Figure 10: Illustration of the low dimensional subspace
S containing normal vectors to the decision boundary in
regions surrounding natural images. For the purpose of
this illustration, we super-impose three data-points {z;}3_;,
and the adversarial perturbations {r;}?_; that send the re-
spective datapoints to the decision boundary {%;}3_, are
shown. Note that {r;}3_, all live in the subspace S.
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Universal adversarial perturbations

® Exist for deep neural networks.
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Conclusion

Universal adversarial perturbations
® Exist for deep neural networks.
e Can generalize across images and different architectures.

® Decision boundaries show geometric correlations, allowing
perturbations to exploit redundancies.

Future work

® A deeper theoretical analysis of the geometric properties of
decision boundaries is needed to better understand these
vulnerabilities.

20/23



Why?

How come adversarial perturbations exist for neural networks, and not
for humans?

® Do humans have better 'training data’?
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Why?

How come adversarial perturbations exist for neural networks, and not
for humans?

® Do humans have better 'training data’?
® |s the human brain just bigger in scale?

® Or is the way humans perceive images fundamentally different?
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Bluesky
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Bluesky

® There are many interesting people on Bluesky!

® Explore starter packs across Machine Learning, Al, and
Economics
® Machine Learning - Theory
ML & Probabilistic Stuff
Economists Working on Al
'ML/AI People’
List of over 50 Econ Starter-Packs by Field
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https://bsky.app/starter-pack/marcelhussing.bsky.social/3lamfdrf4qu2i
https://bsky.app/starter-pack/alexxthiery.bsky.social/3lbcyftagtj2a
https://go.bsky.app/DfnDyqb
https://bsky.app/profile/clem.hf.co/post/3lcar5mjjet2j
https://docs.google.com/spreadsheets/d/e/2PACX-1vRtnBmpSRrRy7ROXIqLdu9cgLYGYb3SzqQ92r0D0BB150jf3D4v48byeg64xDEo3CAHe8N9z-162Bv0/pub?output=pdf
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