Recommender Systems R)

Check for
updates

Shuai Zhang, Aston Zhang, and Lina Yao

1 Introduction to Recommender Systems

Recommender system (RS) seeks to estimate and predict users’ preferences for
products/services by filtering from a huge pool of information base with pat-
terns/rules discovered from data usage history [23]. It is at the core of many
online services such as social networking sites, video streaming services, and
online shopping sites we interact with. For example, Amazon uses recommendation
engines to suggest products or goods that users might buy [30]. YouTube tailors
the recommendation video list based on users’ tastes [22]. Facebook recommends
friends and posts that might interest end users. Recommendation is also at the
core of the Netflix products. To improve the recommendation quality, it hosted
the famous Netflix Prize competition [31], which popularized the research on
recommender systems. Microsoft also uses recommender systems to enhance the
user experience while using XBox [32]. It is seen that recommender systems are
now pervasive in our daily life, and its importance cannot be overemphasized.

The prevalence of recommender systems is mainly owning to the enormous
collection of options provided by online platforms. However, with the abundant
resources available comes the information overload problem. This is when recom-
mender systems come into play. By drawing and learning from huge datasets, the
system can capture users’ interests so as to pinpoint their preferred items accurately.
The benefits of employing recommender systems are manifold: on the one hand, it
can enhance customer satisfaction/delight and improve engagement by providing

S. Zhang (P<) - L. Yao
University of New South Wales, Sydney, Australia
e-mail: shuai.zhang @inf.ethz.ch; lina.yao @unsw.edu.au

A. Zhang
Amazon, Bellevue, WA, USA
e-mail: az@astonzhang.com

© Springer Nature Switzerland AG 2023 637
L. Rokach et al. (eds.), Machine Learning for Data Science Handbook,
https://doi.org/10.1007/978-3-031-24628-9_28

638 S. Zhang et al.

personalized recommendations based on their preferences and interests. On the
other hand, it has been proven to be an effective tool to drive high conversion rate
and customer retention rate, as a result, leading to revenue increase.

1.1 Concepts and Notations

Some important terms that are widely used throughout this chapter are listed and
explained below.

Items/Users Items refer to the objects that are recommended. It can be movies,
songs, games, news, books, blogs, etc. Users are the people to whom the items are
recommended.

Explicit/Implicit Feedback Users give feedback on items to express their prefer-
ences and interests. Explicit feedback directly show how a user rates an item, such
as rating scores from 1 to 5. Implicit feedback such as clicks, watches, and purchase
only serve as a proxy that provides us heuristics about how a user likes an item.

Collaborative Filtering The system Tapestry first coined the term collaborative
filtering [39]. Since then, it has been widely used to represent recommender
systems. The basic idea of CF is that users will act on items similarly if they have
similar behaviors in the past. Most recommendation methods such as neighborhood
methods and factorization-based methods that utilize the collaborative filtering idea
can be called as collaborative filtering techniques.

The goal of recommender systems is to recommend items to users, from which
many tasks are derived. We can formulate the recommendation problem as a re-
gression, classification, ranking, or even sequence modeling problem. For example,
estimating the exact rating a user might give to an item is a regression problem;
predicting whether an item will be clicked or not belongs to the classification
category; generating a ranked list of items for a user can be solved as a learning
to rank problem; sequence modeling models come into play if we need to take the
sequential patterns of user behaviors into account.

In formal, suppose we have a corpus of M users and N items, which forms an
interaction matrix or utility matrix X € RM>*N_ Let U denote the user set and J
denote the item set. In this matrix, rows correspond to users and columns to items.
Generally, this matrix is very sparse, and each entry of this matrix displays users’
feedback such as ratings or like/dislikes to the items. Let X, denote the preferences
of user u toward all items. Let X,; denote the feedback (ratings) from all users for
item i. These notations will be used throughout the chapter.

Recommender Systems 639
2 Recommendation Techniques

In this section, we will introduce some widely used recommendation techniques,
including classic solutions and recent advances, and discuss their advantages and
weakness.

2.1 Non-personalized and Lightly Personalized
Recommendations

A non-personalized recommendation approach that makes the same recommen-
dations for all users is the most basic form of recommender system. Despite its
non-personalization, it can be remarkably effective for cases such as common
displays in online communities (e.g., reddit) or recommendations for new users for
whom we know nothing about. Lightly personalized recommender systems refer to
methods that utilize limited information such as user profiles to infer their interests
roughly so as to make weakly personalized recommendations.

Recommending based on item popularity is one of the most widely used
non-personalized recommendation approaches. We can identify the most popular
items by counting the number of likes/views/purchases, etc. If explicit ratings are
available, we can also rank the items based on the mean of the ratings (e.g., top rated
movies in IMDB). This method is simple yet computationally efficient. It is worth
noting that several settings can influence the recommendation performance largely,
such as the period for which the popularity is calculated and the interaction types
taken into consideration.

Lightly personalized recommendation is a small step toward personalization
that could loosely personalize the recommendation list based on certain types of
side information such as demographics. The motivation behind it is that users’
preferences can be vaguely identifiable with their profiles such as age, gender,
race/ethnicity, financial status, location, etc. It is straightforward to break down
summary statistics by demographic. For example, tastes on movies can be quite
different for people in different ages and stages. Obviously, getting the data about
users is critical in this method. As such, it is common to see that some online
platforms require new users to take a survey before accessing the services.

Notwithstanding the usefulness of non-personalized or lightly personalized
recommendations, their demerits are conspicuous, that is, the recommended items
may not satisfy user’s interest. That is also why personalized recommender systems
start to arise. The following text will be centered on personalized recommendation.

640 S. Zhang et al.

2.2 Neighborhood Methods

There are two standard nearest neighborhood recommendation algorithms: user-
based collaborative filtering and item-based collaborative filtering [1].

2.2.1 User-Based Collaborative Filtering

User-based CF aims to find the users who have similar taste (neighbors) as the target
user and then recommends items based on the neighbor’s interaction behavior. The
similarity calculation is based on interaction behaviors. Various similarity measures
such as cosine similarity, Pearson’s correlation, and Jaccard similarity are viable.
Formally, let sim (X, Xy«) denote the similarity between user u and user v. The
cosine similarity is defined as below:

Xu* : Xv*
I Xuse I Xose |l

Sim(Xys, Xvx) = (D

Pearson correlation is used to find the linear correlation between two vectors,
ranging from —1 to +1, with —1 indicating negative relation, 0 representing no
relation, and +1 representing high positive correlation. It is defined as

SN (Xui = Xuw) (Xoi — Xox)

Sim(Xys, Xos) = m = N =
\/Zizl(Xui - Xu*)z Zizl(Xvi - Xv*)z

: 2)

where X, represents the average rating of user u.

Afterward, it selects the top K similar users and takes the weighted average of
recommendation scores from these K users. To avoid user bias that some users tend
to give high scores and some tend to give low scores, users’ average ratings are
considered. As such, the predicted score is calculated as follows:

Zlf:] Sim(Xu*, Xk*)(ij — X_k*)

Xuj = X_u* +
Z[f:l sim(Xys, Xpx)

3)

2.2.2 Item-Based Collaborative Filtering

Item-based collaborative filtering applies the same idea. Instead of computing
the users similarity, it considers items similarity. Let sim(X,;, X4;) denote the
similarity between item i and item j. Intuitively, the similarity is measured by
observing all the users who have rated both the items. The prediction function of
item j for target user u is as follows:

Recommender Systems 641

O sim(Xg, Xa) Xuk

Xuj - (4)
K sim(Xaj, Xak)

Item-based CF is more stable and faster in system where there are more users
than items. Item similarity matrix can usually be calculated offline as the ratings
received by an item do not change quickly (e.g., a recognized good movie usually
gets higher rating scores). So it does not need to be recomputed frequently.

2.3 Factorization-Based Methods

Factorization-based approaches (or latent factor models) aim to factorize the inter-
action matrix with either explicit ratings or implicit feedback into low-dimensional
rectangular matrices. These methods enjoy higher flexibility and efficiency than
neighborhood-based algorithms.

2.3.1 Matrix Factorization

Matrix factorization [2] method decomposes the user—item interaction matrix into
two lower-dimensional matrices for users and items, respectively.

Let P € RM*k represent the user matrix and Q € RV*¥ represent the item
matrix. Each row of P represents the latent factors for describing user’s interests
and preferences. Each row of the item matrix Q describes items’ characteristics.
The core idea of matrix factorization is to approximate the interaction matrix with
the inner product of P and Q:

X~ poT. (5)

To learn the user and item matrices, we can minimize the following mean squared
error (MSE) if the goal is to recover the explicit ratings:

min Y (Xui — PO+ IIPIF + 1101 (6)
(u,i)ek

where K is the observed ratings. The last two terms are used to regularize the model
parameters. This optimization problem can be efficiently solved with methods such
as stochastic gradient descent.

For implicit feedback, a pairwise loss Bayesian personalized ranking (BPR)
loss [6] can be used. The BPR loss is defined as follows:

642 S. Zhang et al.

Fig. 1 Graphical model for 0Q
probabilistic matrix
factorization
(03
. T T 2 2
min | = > (o (Po] - POT))+IPIF+ 101} |-)

(u,i,jekK

In this loss function, K is composed of both observed and unobserved feedback.
Here, i denotes the item that u likes and j is the item that u has never interacted
with.

We have discussed the biases of user preferences in neighborhood methods.
These biases should also be captured in matrix factorization. To this end, we can
rewrite the scoring function as

Xui ~ P,OT +b; + by + 1, (8)

where u is the overall average rating; b,, and b; indicate the observed deviations of
user u and item i. The objective function should be reformulated accordingly.

Owing to the flexibility of matrix factorization method, additional input sources
such as implicit feedback, temporal dynamics (SVD++ [3]), and social networks
(SoRec [4]) can also be integrated.

The matrix factorization techniques can also be interpreted probabilistically [5].
For example, we can model the rating as a distribution parametrized by item and
user latent features (Fig. 1). Assuming ratings are normally distributed:

M N L
px1p, 0.0 =[[T [V (xu1p0l.0)]". ©)

i=1j=1

Recommender Systems 643

where the mean is determined by user and item latent factors, and the variance o2

is used to model the noise of ratings. We define the indicator /;; to be 1 if X;; is
known (i.e., user i has rated movie j) and O otherwise. We assume that users and
items follow the zero-mean normal distribution with spherical Gaussian priors.

M N
p(Plop) = [[M(P:10, 03D, p(Qlog) = [[M(Qil0, o3 D). (10)
i=1 i=1

This probabilistic model can be solved with expectation maximization (EM) or
gradient descent algorithms. It is worth noting that eventually the optimization
process of EM is identical to MSE minimization.

2.3.2 Factorization Machines

Factorization machine, as a generic method, can be used for regression, classifi-
cation, and ranking tasks. It is essentially an extension of the matrix factorization
algorithm and is powerful in dealing with large-scale sparse datasets and automat-
ically modeling the feature interactions. As such, it has been widely used in fields
such as products/advertisements recommendations and click-through predictions.

Let x) € RP represent the feature vector and y‘) indicate the corresponding
target. x) can be comprised of the one-hot representations of user/item identities
and many other features such as user profiles, latest rated movies by the user, and
so on. Generally, the input feature size can be very large and sparse. Label y) can
represent the exact rating that the user gave to the item or a binary label indicating
whether the item is clicked/liked/bought by the user or not.

Theoretically, an FM can model high degree of feature interactions, but 2-way
FM is usually employed for efficiency and stability concerns. The scoring function
of a 2-way factorization machines is as follows:

D D D
j/:wo—i—Zwix,-—i—Z Z < Vi, Vj > xixj, (11)
=1 i=1 j=i+1

where wyg € R, w € RP,and V € RP <k are the model parameters to be learned.
Same as matrix factorization, k is the dimension of latent factors. < -, - > denotes
the dot product of vectors. This model will degrade to matrix factorization when x;
only contains the user and item one-hot identifiers.

The computation complexity of last term of Eq. 11 in a straightforward way is
O (kD?), which is very expensive. Fortunately, the computation time can be reduced
to linear time O (kD) by expanding and reorganizing as follows:

644 S. Zhang et al.

D D
Z Z <W,Vj>xixj

N
Il
—_
~
|
<.
+
—

1D
<V,~,Vj>x,~xj—§Z<V,~,V,~>x,~x,-
1 i=1

D
(ZWW)
i=1 j

(D 2 p
(ZWm)—Z%%
\ i=1 i=1

Il
7
Mo

~
Il
_
~

b 12)

Il
R =
]~
/I

D

2 .2

Vi fxj —ZV,-, X
1 i=1

~
X

I
| =
M~

1

~
Il

By doing so, the complexity is linear to the number of nonzero elements for sparse
inputs. For model training, a variety of loss functions such as MSE, cross-entropy
loss, and BPR loss [6] are viable.

2.3.3 Collaborative Metric Learning

Both MF and FM model the interactions between users and items with inner
product. However, inner product does not satisfy the triangle inequality, which
might limit the expressiveness of the recommendation models. To alleviate the
issue, researchers explore using distance functions (e.g., Euclidean distance [7],
hyperbolic distance [40]) to replace the inner product. In the inference stage, items
that are close to the user are recommended.

Collaborative metric learning [7] is such a representative model. It assumes that
the positions of users and items are represented by P € RM*kK and Q € RV*K and
the distance between user u# and item i is measured by

d(u,i) = || Py — Qill3. (13)

A max-margin triplet loss is usually used for model optimization. The goal of
the loss is to ensure the distance between a user and the item she likes to be smaller
than that between the user and the item that she dislikes.

L = Z Z max(0, d(u,i) + 1 —d(u, j)), (14)
(u,))€S (u,j)eS'

where set S is made of users and their liked items and set S’ contains users and their
disliked items. Regularization (e.g., norm clipping) is usually used on P and Q to
prevent the data points spread too widely.

Recommender Systems 645
2.4 Modeling Sequences in Recommendation

Intuitively, there usually exist sequential patterns in user behaviors and interaction
trajectories. Users usually have long-term and short-term interests. So far, we only
consider users’ long-term taste and all short-term preferences are ignored. However,
users’ short-term intents play a critical role in users’ decisions [8]. For example, if a
user bought a digital single lens reflex (DSLR), she will probably buy a camera Lens
shortly. Knowing this pattern is important for making satisfying recommendations.
The capability to simultaneously model both long-term and short preferences is the
key to sequence-aware recommendation models.

Suppose each user u is associated with a sequence of items S* = (S%, ... |”Su|),
where S/ represents the item user u interacted with at time step ¢ that does not need
to be absolute time but just an indicator of sequence order. The goal of sequence-
aware recommendation is to predict the next item that a user will interact with.

The model we will introduce is a variant of collaborative metric learning, called
personalized ranking metric embedding (PRME) [9], which considers both user
general and transient intents. Let Q € RY*k denote item embeddings. To model
the transient interest, the model aims to make adjacent items in the sequence close
to one another. Therefore, the following distance shall be minimized:

d(S;_ 1, S =11Qsx — Qsell3, (15)

where S | and S} are adjacent items and S} is the target item. The motivation
behind this is that if two items are interacted subsequent, they are more likely to be
similar.

The general taste module has the same form as collaborative metric learning. The
goal is to minimize the distance between user u and the target item.

d(u, S) = | Py — Vsu |3, (16)

where P € RY*k is the user embeddings and V € RV*¥ is the item embeddings.
The final recommendation score is determined by the weighted summation of
these two distances:

w-dS;,)+ —-w)-du,sS), (17)

where w determines the proportion of contributions of short-term and long-term
interests.

646 S. Zhang et al.
2.5 Neural Architectures for Recommender Systems

In recent years, deep neural networks have achieved tremendous success in a number
of fields such as computer vision, natural language processing, speech recognition,
and so on [10]. A number of deep learning techniques such as convolutional
neural networks, recurrent neural networks, generative adversary networks, graph
neural networks, attention networks, and deep reinforcement learning are gaining
popularity in both industry and academia.

In the meantime, deep neural networks have been revolutionizing the recom-
mendation structures as well [11]. A large amount of deep-learning-based recom-
mendation architectures are proposed these years. It has also been demonstrated
to be especially useful in real-world recommendation scenarios, and a number of
companies are building their recommender systems with deep neural networks. The
major advantages are: First, deep learning is capable of modeling complex data and
learning expressive and high-level representations. Second, deep neural networks
are advantageous in modeling sequence data and capturing the hidden sequential
patterns. Third, deep neural networks can be trained end-to-end, and they have good
composability and flexibility, making the design of more powerful joint models
possible. In this section, we will introduce some recent advancements on deep
neural-networks-based recommender systems. It is worth noting that this section is
highly relevant to the content-based recommender systems that will be introduced
later.

2.5.1 From Linear to Nonlinear Recommendation Models

Methods such as MF and FM use linear transformation to model the feature
interactions (e.g., interaction between user latent vector and item latent vector).
However, the patterns hidden in the interaction data might be extreme complex and
intricate. Using nonlinear neural networks can capture the interaction patterns more
easily. Here we introduce several popular models that implement this idea.

Neural Collaborative Filtering [12]. To enrich the model expressiveness, this
model consists of a multilayered perceptron (MLP) and a generalized matrix
factorization. Like matrix factorization, it uses latent vectors to represent each
user/item. Formally, let P € RM*k and U € RM*k denote user latent embeddings,
and use Q € RV** and V e RV *K to represent each item.

The input of MLP is the concatenation of P, and Q;:

hiy = o1 (W - [Py, Qil+ by)

(13)
he—y =ag—1(We—1 - hg—2 + bg—1)

he(u,i) = og(Wy - hg—1 + by),

Recommender Systems 647

where [-, -] denotes the concatenation operation. £ is the depth of the MLP. W,, b,
and «, are weight, bias, and activation function. s, (u, i) is the output of the MLP.
This component is mainly used to model the complex and nonlinear interactions
between users and items.

The input for the generalized MF component is the entry-wise (Hadamard)
product of user and item latent factors, and it is defined as

o(u,i) =a(W .U, ©V;)). (19)

Afterward, the outputs of two components are concatenated and transformed with
a nonlinear layer to get the final prediction score.

Xui = a(Wlhe(u, i), o(u, i)]). (20)

The model can be trained with commonly used MSE, BPR loss, or the cross-
entropy loss.

Autoencoder for recommendation. An autoencoder is a feed-forward neural
network that codes its input to output while learning a hidden representation in the
bottleneck layer. It is a useful dimensionality reduction model. It can also be used
to reconstruct the interaction matrix. Here, we introduce two models (AutoRec [13]
for rating prediction and CDAE [14] for ranking with implicit feedback).

Similar to neighborhood methods, AutoRec can be either user-based or item-
based. The input of the item-based AutoRec is the column of the rating matrix. The
model consists of the following encoder and decoder:

Encoder : h = a1 (W1 X4 + b1) 21
Decoder : 0 = oy (Woh + b)),

where W,, b,, and o, are weight, bias, and activation function. o has the same
dimensionality as X ;.

The loss function of AutoRec aims to minimize the following reconstruction
error:

M
argmin Y _ || X.i — o3 + A(|Ws| 3. (22)
Webs iy
where || - ||o means that only observed ratings are contributed to the gradient

backpropagation. With partial observed columns as input, it targets at reconstructing
the entire columns. The user-based AutoRec is similar to the item-based AutoRec,
but it uses rows instead of columns of the rating matrix as input.

CDAE also employs an autoencoder framework, but it is designed for recom-
mendation with implicit feedback. Simply put, the model architecture is defined as

o=ar(Wy-ay (W1 Xys + Uy + b1) + b2), (23)

648 S. Zhang et al.

where W,, b,, and o, are weight, bias, and activation function. U,, € RM*k i a
user-specific bias. The loss function of CDAE is

N
) 5)
ml}?b* ZE(XM*, 0) + A([|Wxl|% + [|Ux %), (24)

1=

where ¢ can be MSE or logistic loss. It is worth noting that instead of masking all
unobserved input such as AutoRec, CDAE allows sampled unobserved feedback as
input.

2.5.2 Representation Learning with Neural Architectures

Deep neural networks are powerful feature representation tools. They map raw
features with a number of neural layers and get an abstraction of the input features
in either supervised or unsupervised manner.

Multilayer perceptron is an effective tool for feature representation learning
in recommender systems. The model Wide & Deep learning [15] proposed by
Google is a good example. This model has shown good performance in Google
play app store. This model consists of a wide component and a deep component.
The wide component is a linear regression model that is helpful for memorization
of feature interactions (e.g., co-occurrence of items), while the deep component a
multilayer perceptron that could generalize to unseen feature combinations through
low-dimensional dense embeddings.

In formal, the input is split into two parts: one for the wide network and the other
for the deep network. We denote them with x"9¢ and x9°P, respectively. Same as
FMs, the features are sparse. For the deep component, we let V € RP*K denote
the dense embeddings for the sparse feature inputs x9°P. For simplicity, we assume
that the input features are made of m fields. After looking up from V with x4¢P and
concatenation, we get

h(V,x)=le1,ea,...,enl. (25)

It is used as the input of the deep component. The final scoring function is defined
as

$=o(W x4 fyrp(h(V, x3P)) + b), (26)

where fjs7 p is the MLP network.

DeepFM [16] replaces the linear part of wide and deep model with factorization
machines. Even though linear model is effective for memorization, it is not capable
of model direct feature interactions. As introduced in earlier section, FM can model
2-way interactions efficiently. Using FM as a replacement of the wide part enables

Recommender Systems 649

it to explicitly model feature interactions but will not incur additional computation
cost.

Using DeepFM, the explicit split of features into two parts is no longer necessary,
which could extensively reduce the efforts in feature engineering. The scoring
function of DeepFM is

y=0rux) + furph(V,x))). 27

Item2Vec [33]. Neural networks can also be used for item representations
learning. Barkan et al. [33] proposed item2vec to learn item representations in a
similar way to the word2vec approach [34]. In item2vec, items can be viewed as
words, and the sequences of items a user liked can be seen as sentences. In doing
so, the same skip-gram with negative sampling algorithm as that of word2vec can
be utilized for item embedding learning.

2.5.3 Sequence-Aware Recommendation with Neural Networks

We introduced the concept of sequence-aware recommendation with a representa-
tive model PRME. However, the sequence length in PRME is merely one. With
neural networks, we can model longer sequences. Let L denote the length of the
sequence. The L embedding vectors form a matrix:

EWD = : (28)

To learn patterns from this matrix, a number of neural architectures are viable,
such as RNN, CNN, and attention networks. In this section, we will introduce a
self-attention-based sequential recommendation method [18].

There are three important concepts in an attention network: query, key, and value.
For self-attention, all of them are equal to E .1) ' At first, nonlinear transformations
are applied on query and key:

Q' =a(E"Wp) (29)

K =o(E"DWg), (30)

where Wp € RF*F = Wi e R¥* are weight matrices. o is activation function
(usually ReLLU). Then, the affinity matrix is calculated as follows:

/K/T
700 = softmax (Qﬁ > , 31)

650 S. Zhang et al.

where the output is an L x L affinity matrix (or attention map). ~/d is used to scale
the dot product attention. Afterward, it weights the value matrix with this attention
map. Then it uses mean pooling to aggregate all the L vectors into a single vector.

L
1
(u,t) __ (u,t) (u,t)
m =7 I_El Z E . (32)

Lastly, we replace the Q s, in Eq. (15) and train the model in the same way. This
attention module could greatly improve the expressiveness of PRME in short-term
interest modeling.

2.5.4 Advanced Topics and New Frontiers

In recent years, two topics including graph neural networks [20] and deep rein-
forcement learning [10] are getting increasing popularity in both academia and
industry. Graph neural networks work on graphs and utilize the message passing
mechanism for node/graph representation learning. It is natural to apply this
technique to recommendation tasks [19] as entities in recommender systems can
be organized as graphs. For example, the interaction matrix can be viewed as a
bipartite graph between users and items; relations between users can also form
a social graph. Deep reinforcement learning is another promising technique for
recommender systems. The idea behind reinforcement learning is that an agent
will learn from the environment by interacting with it and receiving rewards for
performing actions. There are five key concepts, including environment, agent,
reward, state, and action. For recommendation task, we can consider the users and
items pool as the environment, the recommendation model as agents, clicks/no
clicks as rewards, features of users as states, and features of candidature items as
actions [21]. However, there are still a number of challenges (e.g., scalability) in
these fields that remain to be solved.

In addition, increasing the explainability of recommendations using neural
networks is also useful. In many cases, both customers and developers want to know
the reason why a specific item is recommended. However, most current models lack
this capability. To enhance the explainability, a lot of effort has been made [35].
Readers are referred to [36] for a comprehensive survey.

2.6 Content-Based Recommender Systems

Content-based recommender systems recommend items based on the content (e.g.,
descriptions, article, videos, etc.) of items and a profile of the user’s interests [25].
Content is the essential element in a digital world. Content can be created in many

Recommender Systems 651

Fig. 2 The framework of
content-based recommender
systems

Recomendation
model

Item User
Representation Representation
Learning Learning
Y\ A

Iltem Content, e.qg.,
text, images, audios,
videos

User Profile,
e.g., biography

different formats. It can be structured tables/graphs or unstructured text, images,
audios, videos, etc. To make effective recommendations, it is important for the
recommender system to understand the content. Unlike the recommendation meth-
ods purely based on the user—item interaction matrix, content-based recommender
systems are methods that combine both content and the interactions. In general,
content-based recommender systems need a component to learn representations
from content and a recommendation module such as MF. Naturally, many collabo-
rative filtering approaches can be integrated as a part of content-based recommender
systems. It is also called hybrid recommender systems used frequently in the
literature [26, 28]. Figure 2 is a typical framework of content-based recommender
systems.

The choice of the methods used for content representation learning is highly
dependent on the content format. Early works used tf*idf, decision trees, and
linear classifiers to model the content [25]. Nowadays, with the development of
neural networks, it is a more common choice to handle the content with deep
neural networks. If we have a table of categorical features, using aforementioned
methods such as DeepFM and Wide&Deep learning model would be a good
fit. Other neural architectures such as convolution neural networks, autoencoder,
and transformer [27] can be used for more complex features. Specifically, these
methods are especially effective for multimedia data sources such as text [29],
image, audio, and even video. For example, convolutional neural etworks with
flexible convolution and pooling operations are effective in capturing the spatial
and temporal dependencies in images and texts. A number of well-defined CNN
architectures such as GoogleNet and ResNet [17, 10] are ready for use. Readers are
referred to the survey [11] for more detailed descriptions of deep learning solutions
for these tasks.

652 S. Zhang et al.
3 Recommendation Tasks and Applications

Recommender systems are growing more popular mainly due to its usefulness
in real-world applications. In this section, we will present some widely studied
applications, concerns in industrial-scale recommendation, and a few of open-source
toolkits that enable practitioners to get hands-on experience.

3.1 Applications of Recommender Systems

Point-of-Interest Recommendation Point-of-interest (POI) becomes popular with
the emergence of location-based social network (LBSN) such as Foursquare,!
Gowalla, and Facebook Place.” On these online platforms, users can check in and
share their experiences about the places. The task of POI recommendation is to
recommend places for users to visit. It can increase the users’ viscosity to the LBSN
service provider and help advertising agency to locate potential customers. POI
recommendation is a representative application of sequence-aware recommendation
systems as users’ check-in data usually show strong sequence patterns in terms of
time and geography.

Social Recommendation Social media platforms such as Facebook, Twitter, and
Instagram connect users with people they are familiar with or business they are
interested in. Recommender algorithms in these platforms aim to recommend people
to follow, pages to like, and posts to read based on users’ previous engagement and
usage. A key consideration in social recommendation is the social relations such as
friendship, following relationship, and membership. Social relations explicitly show
the neighborhood of a user and the trust relations between users that could act as a
strong regularization for recommendations. For example, we can force the users’
representations to be close if they are friends.

Multimedia Recommendation Multimedia data are ubiquitous in our daily life
nowadays. For example, news and blogs usually consist of text, images, and video;
YouTube videos have text descriptions and subtitles; music pieces have text lyrics
and album cover apart from the music audio resources. Recommending multimedia
content requires the recommendation model to properly process these multimedia
signals. Extracting content descriptors in these data is a well-established research
task. A number of recent advanced techniques in fields such as NLP, CV, and
Multimedia might be useful. For example, we can learn text representations with
BERT [41], extract visual features with ResNet or Vision Transformers, and so on.

Uhttps://foursquare.com/.

2 https://www.facebook.com/places/.

Recommender Systems 653

Other Domains The usage of recommender systems is not limited to the aforemen-
tioned domains. Here, we will list a few more cases. For example, recommending
games, news, mobile applications, cars, etc., is of great practical use for ven-
dors. Another interesting direction is fashion-aware recommendation that involves
recommending fashion-related products (e.g., clothes) by inspecting the fashion
elements [37]. In addition, choosing suitable food recipe based on users’ health
condition [38] and recommending beverage (e.g., wine) based on customers’ taste
are also possible with some dedicate designs.

3.2 Practice for Industrial-Scale Recommendation

For real-world industrial-level recommender systems, the scale of dataset is usually
way larger than the dataset used in academia research and beyond the ability of
commonly used model. To address this issue, a two-step process that includes
candidate generation and ranking is usually deployed [22]. First, it generates a set of
recommendation candidates from the massive corpus with techniques such as matrix
factorization. Then, it fine-tunes the candidate set with more detailed inputs with
more advanced models. This is a compromise between accuracy and complexity,
but it now becomes a common practice in industry. Another important aspect of
industrial-level recommendation is feature engineering. Deciding which features are
predictive heavily relies on expert’s experiences. For some certain recommendation
tasks, some specific features or combinations of features are critical for model
performances. Additionally, online test is a very important step in evaluating the
actual effectiveness of a recommendation model in industry. A/B testing (bucket
testing) is one of the most popular online test approaches where two models are
deployed to randomly serving visitors for comparison to determine which one
performs better.

3.3 Tool Kits for Building Recommender Systems

To become familiar with the concepts and techniques in recommender systems,
it is a good idea to get some hands-on experiences. However, implementing a
recommender system from scratch is usually troublesome and time-consuming. As
such, we collected some open-source recommendation libraries that aim to help us
demonstrate or build a simple recommender model easily.

» MyMediaLite.? It is an open-source recommendation library published in
2011. It supports three programming languages: C#, Clojure, and F#. It provides
algorithms on both rating prediction and item ranking tasks.

3 http://mymedialite.net/index.html.

654 S. Zhang et al.

* DeepRec.* It is an open-source library for recommendation with deep neural
networks. It is a Python library that uses TensorFlow as its backend and
addresses tasks such as rating prediction, item ranking, and sequence-aware
recommendation.

e LibRec.’ It is a Java library for recommendation. It aims to solve the rating
prediction and item ranking tasks. A number of traditional recommendation
algorithms are provided.

« Suprise.® It is a Python toolkit that provides a limited amount of rating
prediction models.

« OpenRec.” OpenRec is also a Python recommendation library. In this library,
each recommender is a structured ensemble of reusable modules. However,
there are only a few algorithms implemented.

4 Evaluate Recommender Systems

Proper evaluation measures are critical to building a satisfying recommender sys-
tem. Evaluation is an important step in deciding which recommendation algorithm
is the best. For different recommendation tasks, we may need different evaluation
measures. Here, we introduce some commonly used ones.

4.1 Evaluation on Recommendation Accuracy

In general, accuracy is the top priority and the major concern of most recommender
systems. Here, we summarize several commonly used accuracy measures. We omit
the measures used in classification tasks as they are commonplace in other areas.

Root Mean Square Error (RMSE) RMSE is a widely used evaluation measure
for measuring the accuracy of ratings prediction. The definition is as follows:

1 A
RMSE= | — > (Xui — Xu)?, (33)
| | (u,i)eT

where T is the dataset we want to evaluate on, XAui denotes the predicted ratings,
and X,; is the ground truth. RMSE will give relatively high weight to large errors

4 https://github.com/cheungdaven/DeepRec.
> https://www.librec.net/.

6 http://surpriselib.com/.

7 https://openrec.ai/.

Recommender Systems 655

as the errors are squared before averaged. It is most useful when large errors are
particularly undesirable.

Mean Average Error (MAE) It is also commonplace in measuring the accuracy
of rating prediction task. It measures the average magnitude of errors and is defined
as follows:

1 A
MAE = oo D 1Xui = Xuil. (34)
(u,i)eT

Individual differences are weighted equally in MAE.

Recall Recall at n is the proportion of items the user liked found in the top-n
recommendation list (recommended items are ranked as a list where higher ranked
items are the ones that the user will like the most):

Number of items that u likes among the top-n list
liked(u) '

Recall@n = (35)

The final result is the average recall over all users. liked(u) is the total number of
items that user u liked.

Precision Precision at n is the proportion of recommended items in the top-n list
that are liked by the user:

Number of items that u likes among the top-n list

(36)

Precision@n =
n

The overall precision is the average precision over all users.
Mean Average Precision (MAP) It is different from precision in that correctly

recommended items in top ranks are prioritized.

;?=1 Precision@j x 1.1(j)
min{n, liked(u)} ’

M
1 3 2
U=

where 1..1(j) is an indicator function equaling 1 if the item at rank k is liked by the
user. Obviously, MAP is a rank-aware evaluation metric as it rewards the system for
having the “correct” items higher ranked in the list.

Normalized Discounted Cumulative Gain (NDCG) It is also a rank-aware
measure, where positions are discounted logarithmically. The definition of NDCG
is as

n
DCG@n = Z
j=1

lrel(j)

_ 38
logrj +1 (38)

656 S. Zhang et al.

?nd NDCG@n = % with IDCG@n denoting the DCG for perfect ranked
1st.

Mean Reciprocal Rank (MRR) It cares about the single highest ranked relevant
item, and it calculates the reciprocal of the rank at which the first item is put.

M

1 1
MRR = — , 39
M Z rank,, (39)

u=1

where rank,, is the rank of the first correctly ranked item for user u.

4.2 Beyond Accuracy

Beyond accuracy, there are many other aspects such as coverage, privacy, diversity,
novelty, robustness, scalability, explainability, and freshness that are important for
recommender systems [24, 23]. For example, coverage describes the proportion of
items that the recommender system can recommend or the proportion of users for
which the recommender system can recommend items; privacy means the systems
should not disclose user’s preferences to third parties without permission; diversity
might be very important in some recommendation scenarios where similar items
may not be as useful for different users (e.g., recommendation for a household
with people having different tastes). A robust recommender system should keep
stable in the presence of attacks or misinformation. Explainable recommender
system could provide users with intuitive explanations of why certain items are
recommended to them. Scalability is also a key factor when making decisions as
different recommendation scenarios may have different levels of tolerance on the
computational overhead.

5 Conclusion

This chapter was structured around the techniques, applications, and evaluations
of recommender systems. We introduced non-personalized methods, neighborhood
method, factorization-based approaches, as well as recent deep-learning-based
methods. These methods are applicable for a wide spectrum of recommendation
tasks. We also discussed several specific recommendation applications and concerns
of designing industrial-scale recommender systems. Moreover, we introduced a set
of evaluation metrics that can be used for evaluating recommender systems.

The values and contributions of recommender systems cannot be overestimated.
The development and advancement in the field are inspiring and enlightening. We
hope that the panorama of recommender systems provided in this chapter can help

Recommender Systems 657

researchers and practitioners to get a deep understanding toward recommender
systems.

References

10.
11.

12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

. Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collabora-

tive filtering recommendation algorithms. WWW.

. Koren, Yehuda, Robert Bell, and Chris Volinsky. “Matrix factorization techniques for recom-

mender systems.” Computer 8 (2009): 30-37.

. Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. KDD. ACM, New York, NY, USA, 426—434.

. Ma, Hao, et al. “Recommender systems with social regularization.” WSDM. ACM, 2011.
. Mnih, Andriy, and Ruslan R. Salakhutdinov. “Probabilistic matrix factorization.” Advances in

Neural Information Processing Systems. 2008.

. Rendle, Steffen, et al. “BPR: Bayesian personalized ranking from implicit feedback.” UAL

AUALI Press, 20009.

. Hsieh, Cheng-Kang, et al. “Collaborative metric learning.” WWW, 2017.
. Quadrana, Massimo, Paolo Cremonesi, and Dietmar Jannach. “Sequence-aware recommender

systems.” ACM Computing Surveys (CSUR) 51.4 (2018): 66.

. Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan Yuan. 2015.

Personalized ranking metric embedding for next new POI recommendation. I[JCALI
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.
Zhang, Shuai, et al. “Deep learning based recommender system: A survey and new perspec-
tives.” ACM Computing Surveys (CSUR) 52.1 (2019): 5.

He, Xiangnan, et al. “Neural collaborative filtering.” WWW, 2017.

Sedhain, Suvash, et al. “Autorec: Autoencoders meet collaborative filtering.” WWW. ACM,
2015.

Wu, Yao, et al. “Collaborative denoising auto-encoders for top-n recommender systems.”
WSDM. ACM, 2016.

Cheng, Heng-Tze, et al. “Wide & deep learning for recommender systems.” Proceedings of the
1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.

Guo, Huifeng, et al. “DeepFM: a factorization-machine based neural network for CTR
prediction.” arXiv preprint arXiv:1703.04247 (2017).

He, Kaiming, et al. “Deep residual learning for image recognition.” CVPR. 2016.

Zhang, Shuai, et al. “Next Item Recommendation with Self-Attentive Metric Learning.” AAAI
Conference. Vol. 9. 2019.

Ying, Rex, et al. “Graph convolutional neural networks for web-scale recommender systems.”
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, 2018.

Kipf, Thomas N., and Max Welling. “Semi-supervised classification with graph convolutional
networks.” arXiv preprint arXiv:1609.02907 (2016).

Zheng, Guanjie, et al. “DRN: A deep reinforcement learning framework for news recommen-
dation.” WWW, 2018.

Covington, Paul, Jay Adams, and Emre Sargin. “Deep neural networks for YouTube recom-
mendations.” RecSys. ACM, 2016.

Ricci, Francesco, Lior Rokach, and Bracha Shapira. “Introduction to recommender systems
handbook.” Recommender Systems Handbook. Springer, Boston, MA, 2011. 1-35.

Ge, Mouzhi, Carla Delgado-Battenfeld, and Dietmar Jannach. “Beyond accuracy: evaluating
recommender systems by coverage and serendipity.” RecSys. ACM, 2010.

658 S. Zhang et al.

25. Pazzani, Michael J., and Daniel Billsus. “Content-based recommendation systems.” In The
adaptive web, pp. 325-341. Springer, Berlin, Heidelberg, 2007.

26. Burke, R., 2002. Hybrid recommender systems: Survey and experiments. User Modeling and
User-Adapted Interaction, 12(4), pp.331-370.

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, I., 2017. Attention is all you need. arXiv preprint arXiv:1706.03762.

28. Barkan, O., Koenigstein, N., Yogev, E. and Katz, O., 2019, September. CB2CF: a neural
multiview content-to-collaborative filtering model for completely cold item recommendations.
RecSys (pp. 228-236).

29. Malkiel, 1., Barkan, O., Caciularu, A., Razin, N., Katz, O. and Koenigstein, N., 2020.
RecoBERT: A Catalog Language Model for Text-Based Recommendations. arXiv preprint
arXiv:2009.13292.

30. Linden, Greg, Brent Smith, and Jeremy York. “Amazon.com recommendations: Item-to-item
collaborative filtering.” IEEE Internet Computing 7, no. 1 (2003): 76-80.

31. Bennett, J. and Lanning, S., 2007, August. The Netflix Prize. In Proceedings of KDD Cup and
Workshop (Vol. 2007, p. 35).

32. Koenigstein, N., Nice, N., Paquet, U. and Schleyen, N., 2012, September. The Xbox recom-
mender system. In RecSys (pp. 281-284).

33. Barkan, O. and Koenigstein, N., 2016, September. Item2vec: neural item embedding for
collaborative filtering. In 2016 IEEE 26th International Workshop on Machine Learning for
Signal Processing (MLSP) (pp. 1-6). IEEE.

34. Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781.

35. Barkan, O., Fuchs, Y., Caciularu, A. and Koenigstein, N., 2020, September. Explainable
recommendations via attentive multi-persona collaborative filtering. In RecSys (pp. 468-473).

36. Zhang, Yongfeng, and Xu Chen. “Explainable Recommendation: A Survey and New Perspec-
tives.” Foundations and TrendsAd& in Information Retrieval 14, no. 1 (2020): 1-101.

37. Kang, W.C., Fang, C., Wang, Z. and McAuley, J., 2017, November. Visually-aware fashion
recommendation and design with generative image models. ICDM (pp. 207-216). IEEE.

38. Phanich, M., Pholkul, P. and Phimoltares, S., 2010, April. Food recommendation system using
clustering analysis for diabetic patients. In 2010 International Conference on Information
Science and Applications (pp. 1-8). IEEE.

39. Goldberg, D., Nichols, D., Oki, B.M. and Terry, D., 1992. Using collaborative filtering to weave
an information tapestry. Communications of the ACM, 35(12), pp. 61-70.

40. Vinh Tran, L., Tay, Y., Zhang, S., Cong, G. and Li, X., 2020, January. HyperML: a boosting
metric learning approach in hyperbolic space for recommender systems. In Proceedings of the
13th International Conference on Web Search and Data Mining (pp. 609-617).

41. Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

