My thoughts on Shalev-Shwartz & Ben-David

Michael McMahon January 25, 2022

Machine Learning Study Group

#MrsMaisel WHERE THE HELL HAVE YOU BEEN ALL MY LIFE?

Book Outline

Part I: Foundations

- 2. A Gentle Start
- 3. A Formal Learning Model
- 4. Learning via Uniform Convergence
- 5. The Bias-Complexity Tradeoff
- 6. The VC-Dimension
- 7. Nonuniform Learnability
- 8. The Runtime of Learning

Part II: From Theory to Algorithms

- 9. Linear Predictors
- 10. Boosting
- 11. Model Selection and Validation
- 12. Convex Learning Problems
- 13. Regularization and Stability
- 14. Stochastic Gradient Descent
- 15. Support Vector Machines
- 16. Kernel Methods
- 17. Multiclass, Ranking, and Complex Prediction Problems
- 18. Decision Trees
- 19. Nearest Neighbor
- 20. Neural Networks

Part III: Additional Learning Models

- 21. Online Learning
- 22. Clustering
- 23. Dimensionality Reduction
- 24. Generative Models
- 25. Feature Selection and Generation

Part IV: Advanced Theory

- 26. Rademacher Complexities
- 27. Covering Numbers
- 28. Proof of the Fundamental Theorem of Learning Theory
- 29. Multiclass Learnability
- 30. Compression Bounds
- 31. PAC-Bayes
 - Appendix A Technical Lemmas
 - Appendix B Measure Concentration
 - Appendix C Linear Algebra

But before any of that...

1. Introduction

- 1.1 What Is Learning?
- 1.2 When Do We Need Machine Learning?
- 1.3 Types of Learning
- 1.4 Relations to Other Fields
- 1.5 How to Read This Book

1.5.1 Possible Course Plans Based on This Book

1.6 Notation

What I learned

What is Machine Learning

Some descriptions

- "we wish to program computers so that they can 'learn' from input available to them. Roughly speaking, learning is the process of converting experience into expertise or knowledge. The input to a learning algorithm is training data, representing experience, and the output is some expertise, which usually takes the form of another computer program that can perform some task."
- "Machine Learning is about the execution of learning by computers; hence algorithmic issues are pivotal. We develop algorithms to perform the learning tasks and are concerned with their computational efficiency."
- "given the size of available samples, machine learning theory aims to figure out the degree of accuracy that a learner can expect on the basis of such samples."

<u>Al</u>: trying to build automated imitation of intelligent behavior <u>ML</u>: use the strengths and special abilities of computers to complement human intelligence, often performing tasks that fall way beyond human capabilities

Stats: test hypotheses

 $\underline{\mathsf{ML}}$: use the data gathered from samples to come up with meaningful patterns (or hypotheses) that may have been missed by the human observer.

Stats: basis on asymptotic properties

ML: the theory of machine learning focuses on finite sample bounds

<u>Stats:</u> common to work under the assumption of certain presubscribed data models

ML: emphasis is on 'distribution-free' setting

- 1. Supervised versus Unsupervised
 - Classifier versus plain-vanilla LDA

- 1. Supervised versus Unsupervised
 - Classifier versus plain-vanilla LDA
- 2. Active versus Passive Learners
 - Pose questions vs take what you're given

- 1. Supervised versus Unsupervised
 - Classifier versus plain-vanilla LDA
- 2. Active versus Passive Learners
 - Pose questions vs take what you're given
- 3. Helpfulness of the Teacher
 - ML assumes statistical learning

- 1. Supervised versus Unsupervised
 - Classifier versus plain-vanilla LDA
- 2. Active versus Passive Learners
 - Pose questions vs take what you're given
- 3. Helpfulness of the Teacher
 - ML assumes statistical learning
- 4. Online versus Batch Learning Protocol
 - Real-time vs ex-post learning

Basic Statistical Learning: Elements

- Domain set \mathcal{X}
 - Domain points are instances and a vector of features
- Label set \mathcal{Y}
- Training data $S = ((x_1, y_1), (x_2, y_2), ...(x_m, y_m))$
- Learner's Output $h: \mathcal{X} \to \mathcal{Y}$
- Model of Data Generation
 - Assume: probability distribution over ${\mathcal X}$ is ${\mathcal D}$
 - No knowledge of ${\mathcal D}$ necessarily assumed
 - Correct labelling function $\Rightarrow f : \mathcal{X} \to \mathcal{Y}$
 - $y_i = f(x_i) \ \forall i$

Basic Statistical Learning: An Approach I

Objective

Based on S, can we figure out $h : \mathcal{X} \to \mathcal{Y}$ that matches (approximates) $f : \mathcal{X} \to \mathcal{Y}$

- Measure of Success: Low error of the classifier
 - Probability, according to \mathcal{D} , a random instance x has $h(x) \neq f(x)$

$$L_{\mathcal{D},f} \equiv \mathbb{P}_{x \sim \mathcal{D}} \left[h(x) \neq f(x) \right]$$

• True error of h / generalisation error / the risk

Basic Statistical Learning: An Approach I

Objective

Based on S, can we figure out $h : \mathcal{X} \to \mathcal{Y}$ that matches (approximates) $f : \mathcal{X} \to \mathcal{Y}$

- Measure of Success: Low error of the classifier
 - Probability, according to D, a random instance x has h(x) ≠ f(x)

$$L_{\mathcal{D},f} \equiv \mathbb{P}_{x \sim \mathcal{D}} \left[h(x) \neq f(x) \right]$$

 $\bullet\,$ True error of h / generalisation error / the risk

Problem

The learner is blind to the underlying distribution \mathcal{D} over the world and to the labeling function f. The only way the learner can interact with the environment is through observing the training set.

Solution

A learning algorithm receives as input a training set S, sampled from an unknown distribution D and labeled by some target function f, and should output a predictor $h_S : \mathcal{X} \to \mathcal{Y}$. The goal of the algorithm is to find h_S that minimizes the error with respect to the unknown D and f.

Solution

A learning algorithm receives as input a training set S, sampled from an unknown distribution D and labeled by some target function f, and should output a predictor $h_S : \mathcal{X} \to \mathcal{Y}$. The goal of the algorithm is to find h_S that minimizes the error with respect to the unknown D and f.

• Use the training error / empirical error / empirical risk:

$$L_{\mathcal{S}}(h) \equiv \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

• This learning paradigm: Empirical Risk Minimization (ERM)

$$ERM_{\mathcal{H}}(\mathcal{S}) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{\mathcal{S}}(h)$$