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Motivation: Why Don’t Big Models Overfit?

Empirical observation: test error improves polynomially with
model size (M) and data size (N):

R(M,N) ≈ R∗ +
c1
Ma1

+
c2
Na2

for irreducible risk R∗ > 0, constants a1, a2, c1, c2 > 0
independent of M,N

But from statistical theory:

MSE = Bias2 + Variance

Bias decreases as M ↑ (better approximation)
Variance increases as M ↑ (overfitting, memorising noise)
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Theory Versus Practice

Conflict: theory predicts “U-shaped” curve:
Model improves with size initially
Eventually model gets too big for data ⇒ performance crashes
But in modern neural networks, we never see the crash

Figure: Scaling law for language models: test loss vs. number of
parameters (Kaplan et al., 2020).
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Lin et al.: Simplify for Precise Analysis

Big neural networks are complicated (e.g., transformers)

Solution: focus on simple linear regression case:

Input: data x live in infinite-dimensional space (“true”,
complex world)
Model: can only use M < ∞ covariates ⇒ compress infinite
world into M features via Gaussian sketching1

Training: one-pass SGD

1x̃ = Sx , where S is M ×∞ random Gaussian matrix
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Error Decomposition

Decomposition: risk (error) broken down into:

Approximation Error: model is too small to represent
complexity of data (decreasing in M)
Bias Error: insufficient data to converge to best solution
(decreasing in N)
Variance Error: “memorising” noise in the specific training
samples (usually increasing in M)
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Disappearing Variance

In one-pass SGD, variance term is higher-order ⇒ effectively
vanishes

Why?

Implicit regularisation!
SGD prefers “minimum norm” solution even in the absence of
explicit penalty term in loss (e.g., Ridge/LASSO)2

So, model can avoid memorising noise even when capacity M
is sufficient to do so

2Zou et al. (2021).
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Disappearing Variance

Effective production function:

R(M,N) = R∗ +Θ

(
1

Ma−1

)
+ Θ̃

(
1

(Nγ)(a−1)/a

)
︸ ︷︷ ︸
leading order given by the sum of Approx and Bias

Var = Θ̃

(
min
{
M, (Nγ)1/a

}
N

)
︸ ︷︷ ︸

higher order, thus unobservable

Economic interpretation:
Returns to M never negative ⇒ only limited by approximation
(need bigger M), bias (need bigger N), or compute (C ≈ MN)
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Allocating Resources

Optimisation problem:

Budget of compute is C
Compute cost C ≈ M × N
How to choose M,N to minimise risk?

Solution:

Optimal ratio: M ∝ C
1

b+1 ,N ∝ C
b

b+1 3

Comparison with Chinchilla4:
Famous paper suggesting that N and M should scale equally
This paper: optimal ratio depends on structure of data
through spectral decay b

3b > 1 controls the decay of the optimal model parameter w∗ (= signal,
since y = xTw∗ + ϵ), and so is a measure of the difficulty of the task where
larger b → simpler.

4Hoffman et al. (2022).
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Takeaways

Key points:
Variance term negligible ⇒ want to uniformly increase
parameters/data
However, “optimal” AI production function depends on the
structure of the data:

Harder problems require larger N (input of intermediate
goods?) relative to M (capital?)
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Key Limitations

1 Linear Model:
Focus on linear setting is tractable, shows scaling applies even
in simple settings
But most models (NNs) are non-linear: features ̸= weights
Feature learning (“grokking”) is arguably where a lot of
interesting stuff happens

2 One-pass SGD:
Seeing data once brings theoretical neatness
But real models train for multiple epochs
Authors admit: multi-pass SGD may cause variance to return,
but their theory can’t handle extra complexity

3 Data assumptions:
Assume data have Gaussian distribution, power-law spectrum
Real data could be meaningfully different (heavy-tailed,
structured) ⇒ exponents in scaling law may not hold
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Future Weeks

Tuesday 10th February (2:30pm): double descent in linear
models, presented by Max Kasy

Tuesday 24th February (2:30pm): empirical scaling laws in
LLMs, presented by Thomas Foster

Tuesday 10th March (2:30pm): scaling and the means of
prediction, presented by Aarushi Kalra
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