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Abstract
Much of the debate on the impact of algorithms is concerned with fairness, defined as

the absence of discrimination for individuals with the same “merit." Drawing on the theory
of justice, we argue that leading notions of fairness suffer from three key limitations: they
legitimize inequalities justified by “merit;" they are narrowly bracketed, considering only
differences of treatment within the algorithm; and they consider between-group and not within-
group differences. We contrast this fairness-based perspective with two alternate perspectives:
the first focuses on inequality and the causal impact of algorithms and the second on the
distribution of power. We formalize these perspectives drawing on techniques from causal
inference and empirical economics, and characterize when they give divergent evaluations. We
present theoretical results and empirical examples, demonstrating this tension. we further
use these insights to present a guide for algorithmic auditing. We discuss the importance of
inequality and power-centered frameworks in algorithmic decision-making.

1 Introduction
A rich line of work within computer science examines the differential treatment by algorithms of
historically disadvantaged and marginalized groups. Much of this work is concerned with fairness of
algorithms, which is understood as the absence of discrimination. Many leading notions of fairness
– such as predictive parity or balance – are based on some variant of the question are members
of different groups who are of equal “merit" treated equally by the algorithm?"1 Research in this
space has ranged from translating these fairness notions to various domains to examining when and
whether they are simultaneously achievable with other constraints.

In the spirit of “reflective equilibrium” [55], in this work we discuss implications of these fairness
definitions that may be deemed normatively undesirable. Leading notions of fairness take the
objective of the algorithm’s owner or designer as a normative goal. In the context of hiring,
for instance, if productivity is perfectly predictable and an employer’s hiring algorithm is profit-
maximizing without constraints, then their hiring decisions are fair, by definition; only deviations
from profit-maximization are considered discriminatory. Furthermore, we argue that these leading
notions of fairness, such as predictive parity or balance, suffer from the following three limitations.
Namely, these fairness-based perspectives:

1. legitimize and perpetuate inequalities justified by “merit" both within and between groups.
The focus on “merit" – a measure promoting the decision-maker’s objective – reinforces, rather
than questions, the legitimacy of the status quo.

∗Department of Economics, Oxford University, maximilian.kasy@economics.ox.ac.uk
†Society of Fellows, Harvard University, rabebe@fas.harvard.edu
1Definitions that do not have this general form are notions of “disparate impact,” which do not refer to merit, and

notions of “individual fairness,” which are based on merit but do not refer to group membership.
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2. are narrowly-bracketed. Fairness only requires equal treatment within the context of the
algorithm at hand, and does not consider the impact of the algorithm on inequality in the
wider population. Unequal treatment that compensates pre-existing inequalities might reduce
overall inequality.

3. focus on categories (protected groups) and ignore within-group inequalities, e.g., as emphasized
by intersectional critiques [14]. Equal treatment across groups can be consistent with great
inequality within groups.

Informed by insights from theories of justice and empirical economics, we discuss each of these
limitations. We then compare this fairness-based perspective with two alternative perspectives.
The first asks: what is the causal impact of the introduction of an algorithm on inequality, both
within and between groups? In contrast to fairness, this perspective is consequentialist. It depends
on the distribution of outcomes affected by the algorithm rather than treatment, and it does
so for the full population rather than only for individuals who are part of the algorithm. This
perspective encompasses both frameworks based on social welfare functions and statistical measures
of inequality. In Section 3, we provide a formal characterization of the impact of marginal policy
changes on both fairness and inequality using influence functions, which allows us to elucidate the
conflict between these two objectives.

The second alternative perspective focuses on the distribution of power and asks: who gets
to pick the objective function of an algorithm? The choice of objective functions is intimately
connected with the political economy question of who has ownership and control rights over data
and algorithms. To explore this question, we formalize one possible notion of power based on
the idea of “inverse welfare weights.”2 Given actual decisions, what are the welfare weights that
rationalize these decisions? We formalize this in Section 4, which builds on insights from Section 3
by solving the inverse of a social welfare maximization problem.

The rest of this paper is structured as follows: our setup is introduced in Section 2. We formalize
the perspective based on the causal impact of algorithms in Section 3 and that based on distribution
of power in Section 4. In doing so, we highlight limitations of a fairness-based perspective, which
we expose further in Section 5 through examples. In Section 6, we present an empirical application
of these insights. In Section 7, we present a step-by-step guide for algorithmic auditing, estimating
the causal impact of algorithmic changes on measures of inequality or welfare. We close with a
discussion on the importance of inequality- and power-based frameworks in algorithmic decision
making.

1.1 Related Work
Many now-classic bodies of work study discrimination and harms caused by machine learning systems
on historically disadvantaged groups in settings ranging from ad delivery [61] to facial analysis
[10] to search engine bias [53] and provision of public services [16]. [5] provide a framework for
understanding the negative consequences of such automated decision-making systems. For general
overviews and discussions, see, also [1, 7, 9, 20, 53, 54]. With a growing set of findings of algorithmic
discrimination in the backdrop, researchers across numerous fields have sought to formalize and
define different notions of fairness as well as analyze their feasibility, incompatibility, and politics.
We direct the reader to [12, 19, 22, 60, 38, 45, 50, 64] for an overview and extensive discussions
around various definitions of fairness as well as their relationship with other algorithmically-defined
desiderata.

Our work draws on the economics literature on discrimination, causal inference, social choice,
optimal taxation, and on inequality and distributional decompositions. Definitions of fairness

2Influence functions and welfare weights are commonly used in economics and statistics, but are less common in
computer science. We present a self-contained introduction in the appendix as they are key tools in our analyses.
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correspond to notions of taste-based and statistical discrimination in economics [6], and the notion
of fairness defined in Equation (5) correspond to “hit-rate” based tests for taste-based discrimination
as in [39]. Causal inference and the potential outcomes framework is reviewed in [32], social choice
theory and welfare economics in [56]. Distributional decompositions are discussed in [18]; we draw
in particular on the RIF regression approach of [17]. Understanding aggregation in social welfare
functions in terms of welfare weights is common in optimal tax theory [58]. For a sociological
perspective on discrimination, we direct the reader to an overview in [59].

Recent work has considered short-comings of fairness across a number of dimensions. For
instance, there is a growing body of work examining the long-term impact of fairness-driven
interventions [15, 29, 28, 41, 68]. Similarly, there is also a surge of work focused on understanding
and improving fairness across subgroups [24, 36, 35] as well as in settings where group membership
may not be known [21, 23, 33, 66]. Other work examines perceived tradeoffs between fairness and
other desiderata, such as accuracy [67].

The closest work to ours have sought to understand the intersection of fairness with social welfare
and inequality [48, 30, 25, 26, 49]. Despite tackling a different set of questions than ours, there
are several papers that consider welfare-based analyses of fairness notions. In a notable example,
[30] presents a welfare-based study of fair classification and study the relationship between fairness
definitions and the long-standing notions of social welfare considered in this work. By translating a
loss minimization program into a social welfare maximization problem, they show that more strict
fairness criteria can lead to worse outcomes for both advantaged and disadvantaged groups. [25]
similarly consider fairness and welfare, proposing welfare-based measures that can be incorporated
into a loss minimization program, and [26] connect fairness to notions of equality of opportunity. In
a related discussion, [49] considers algorithmic fairness questions within a social welfare framework,
comparing policies by machine learning systems with those set by a social planner that cares
both about efficiency and equity. This line of work, on which we build, argues for more holistic
assessments of welfare and equity in examining the impact of algorithmic decision-making.

2 Setup and Notation
A decision-maker D , such as a firm, a court, or a school, makes repeated decisions on individuals
i, who may be job applicants, defendants, or students. For clarity, we omit the subscript i when
there is no ambiguity. For each individual i, a binary decision W – such as hiring, release from
jail, college admission – is made. Individuals are characterized by some unobserved “merit” M ∈ R,
such as marginal productivity, recidivism, or future educational success. In some settings, M is
binary, but we do not make this assumption unless otherwise noted. In this work, merit M refers to
the variable that the decision-maker cares about; for instance a worker’s productivity in the hiring
context, or recidivism in the bail setting context. This is the variable that supervised learning
methods typically aim to predict. By contrast, the outcome Y – which we introduce in Section 3
below – is the variable that the treated individuals care about; for instance income in the hiring
context, or time spent in jail in the bail setting context.3

The decision-maker’s objective is to maximize

µ = E[W · (M − c)], (1)

where the expectation averages over individuals i, and c is the unit cost of choosing W = 1.4
Upper-case letters denote random variables, lower-case letters values that these random variables

3Our terminology here deviates from familiar usage in that we use “outcome” to refer to Y rather than M . Note
here, there are two possible “outcomes" – one for the individual concerned and one for the decision-maker – and this
usage is intended to avoid ambiguity between them.

4Formally, we consider a probability space (I , P,A ), where all expectations integrate over i ∈ I with respect to
the probability measure P , and all random variables are functions on I that are measurable with respect to A .
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might take. In the hiring context, µ corresponds to profits and c to the wage rate. In the college
admissions context, µ corresponds to average student performance among admitted students, and c
might be the Lagrange multiplier (shadow cost) of some capacity constraint.

The decision-maker D does not observe M , but has access to some covariates (features) X. D
can also form a predictive model for M given X based on past data

m(x) = E[M |X = x]. (2)

In practice, m needs to be estimated using some supervised machine learning algorithm. We will
abstract from this estimation issue for now and assume that m(·) is known to D .

D can allocate W as a function of X, and possibly some randomization device. We assume
throughout that W is chosen independently of all other variables conditional on X, and thus is
conditionally exogenous.5 Denote w(x) = E[W |X = x] the conditional probability of W = 1. Given
their available information, the optimal assignment policy for D satisfies

w∗(·) = argmax
w(·)∈W

E[E[W · (M − c)|X]]

= argmax
w(·)∈W

E[w(X) · (m(X)− c)], (3)

where W is a set of admissible assignment policies.6 The second equality holds because of conditional
exogeneity of W and the law of iterated expectations. If W is unrestricted, then up to arbitrary tie
breaking for m(X) = c,

w∗(x) = 1(m(x) > c). (4)

We assume that individuals are additionally characterized by a binary variable A, corresponding to
protected groups such as gender or race. This variable A may or may not be part of X.

Fairness Definitions Numerous definitions of fairness have been proposed in the literature
[31, 50]. We will focus on the following popular definition of fairness, corresponding to the notion
of “predictive parity” or calibration

E[M |W = 1, A = a] = E[M |W = 1] ∀ a. (5)

This equality is the basis of tests for preferential discrimination in empirical economics. (See for
instance [39].) A similar requirement could be imposed for W = 0.

Another related requirement is “balance for the positive (or negative) class,” E[W |M = m,A] =
E[W |M = m], which indicates equality of false positive (respectively negative) rates.

Predictive parity requires that expected merit, conditional on having received treatment 1 (or 0),
is the same across the groups A. Balance requires that the probability of being treated, conditional
on merit, is the same across the groups A. For the binary M case, balance and predictive parity
cannot hold at the same time, unless either prediction is perfect (M = E[M |X]), or base rates are
equal (M ⊥ A|W ) [12, 22, 38] . In our subsequent discussion, we focus on “predictive parity” as
the leading measure of fairness; we provide parallel results for balance in Appendix A.

For A ∈ {0, 1}, the assignment rule w(·) satisfies predictive parity if and only if π = 0, where

π = E[M |W = 1, A = 1]− E[M |W = 1, A = 0]

= E
[
M ·

(
WA

E[WA] −
W (1−A)

E[W (1−A)]

)]
. (6)

5This assumption holds by construction, if X captures all individual-specific information available to D .
6This type of decision problem, with a focus on estimation in finite samples, has been considered for instance in

[37] and [3].
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Fairness as a constraint A leading approach in the recent literature is to consider fairness as a
constraint to be imposed on the decision-maker’s policy space. That is, w∗(·) is defined as above,
but W is specified to be of the form

W = {w(·) : π = 0} (7)

for predictive parity (and similarly for other notions of fairness). We characterize the solution to
this optimization problem in Corollary 1 below.

We argued in the introduction that fairness takes the objective of the algorithm’s owner as a
normative goal. This is formalized by the following observation.

Observation 1 Suppose that (i) m(X) = M (perfect predictability), (ii) w∗(x) = 1(m(X) > c)
(unconstrained maximization of D’s objective µ), and (iii) W,M ∈ {0, 1} (classification setting).
Then w∗(x) satisfies predictive parity, i.e., π = 0.

This observation is an immediate consequence of the definition of fairness as predictive parity
and points to the limited critical potential of such a definition of fairness. It implies, for instance,
that if M is perfectly predictable given the available features and employers are profit-maximizing
without constraints, then their hiring decisions will be fair by definition. The algorithm w(·) violates
fairness only if (i) D is not actually maximizing π (taste-based discrimination), (ii) outcomes are
mismeasured, leading to biased predictions m(·), or (iii) predictability is imperfect, leading to
statistical discrimination. Similar observations could be stated for other notions of fairness, such as
“balance for the positive class” (cf. Observation 2 in the appendix), and for other settings, such as
regression, where M,W ∈ R.

Absent perfect predictability, there may be a tension between the maximization of µ and
predictive parity (π = 0). This tension has been discussed in economics as a failure of predictive
parity (called “hit rate test” in this literature, [39]) to perfectly reflect taste based discrimination
[6]. This failure is due to the difference between average and marginal expected merit among the
treated. Taste-based discrimination corresponds to differences between the merit of the marginally
treated, while predictive parity corresponds to equality of average merit among the treated. profit-
maximization is equivalent to the absence of taste-based discrimination, by definition.

Observation 1 throws the three limitations of a fairness-based perspective into sharp relief: under
this perspective, inequality both between and within groups is acceptable if it is justified by merit
M (D ’s objective), no matter where the inequality in M is coming from. Furthermore, given merit,
fairness aims for equal treatment within the algorithm, rather than aiming for compensating pre-
existing inequalities of welfare-relevant outcomes in the wider population. And, finally, predictive
parity or balance do not consider inequality of treatments (or outcomes) within the protected
groups, but rather only between them. Below, we provide examples where changes to an assignment
algorithm w(·) decreases un-fairness, while at the same time also increasing inequality and decreasing
welfare.

3 Inequality and the Causal Impact of Algorithms
Drawing on theories of justice, we turn to a perspective focused on social welfare and inequality as
well as the causal impact of algorithms [34, 56, 58]. Suppose that we are interested in outcomes Y
that might be affected by the treatment W , where the outcomes Y are determined by the potential
outcome equation

Y = W · Y 1 + (1−W ) · Y 0, (8)
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cf. [32]. Suppose, further, that treatment is assigned randomly conditional on X with assignment
probability w(X). Then, the joint density of X and Y is given by7

pY,X(y, x) =
[
pY 0|X(y, x)+

w(x) ·
(
pY 1|X(y, x)− pY 0|X(y, x)

)]
· pX(x). (9)

We are interested in the impact of w(·) on a general statistic ν of the joint distribution of
outcomes Y and features X

ν = ν(pY,X). (10)

ν might be a measure of inequality (such as the variance of Y or the ratio between two quantiles of
Y ), a measure of welfare (such as the expectation of Y γ , where γ parametrizes inequality aversion),
or a measure of group-based inequality (such as the difference in the conditional expectation of Y
given A = 1 and A = 0).

The influence function and welfare weights In order to characterize the impact of changes
to the assignment policy w(x) on the statistic ν, it is useful to introduce the following local
approximation to ν. Assume that ν is differentiable as a function of the density pY,X .8 Then, as
discussed [63], as well as in [13], [17], and [34], we can locally approximate ν by

ν(pY,X)− ν(p∗Y,X) = E[IF (Y,X)] + o
(
‖pY,X − p∗Y,X‖

)
, (11)

where IF (Y,X) is the influence function of ν(pY,X) at p∗Y,X , evaluated at the realization Y,X, and
the expectation averages over the distribution pY,X .

In Section B in the appendix, we provide an introduction and review, as well as a more formal
definition of the influence function as dual representation of the Fréchet derivative of ν.

Suppose now that
w(x) = w∗(x) + ε · dw(x), (12)

where w0 is some baseline assignment rule, and dw(x) is a local perturbation to w. Suppose that p
and p∗ are the outcome distributions corresponding to w and w∗. By Equation (11)

ν(pY,X)− ν(p∗Y,X) ≈
∫
IF (y, x)(pY,X(y, x)− p∗Y,X(y, x))dydx.

By Equations (9), it then follows that

∂

∂ε
ν(pY,X) =

∫
IF (y, x) ·

(
pY 1|X(y, x)− pY 0|X(y, x)

)
· pX(x)dx

= E [dw(X) · n(X)] , where

n(x) = E
[
IF (Y 1, x)− IF (Y 0, x)|X = x

]
. (13)

Proposition 1 below proves this claim. Defining ω as the average slope of IF (y, x) between Y 0

and Y 1, we can rewrite IF (Y 1, x)− IF (Y 0, x) = ω · (Y 1 − Y 0). We can think of ω as the “welfare
weight” for each person, measuring how much the statistic ν “cares” about increasing the outcome
Y for that person. This is analogous to the welfare weights used in public economics and optimal
tax theory, cf. [57, 58]. We present examples to give intuition of welfare weights and influence
functions.

7The density is assumed to exist with respect to some dominating measure. For simplicity of notation, our
expressions are for the case where the dominating measure is the Lebesgue measure, but they immediately generalize
to general dominating measures.

8To be precise, we need Fréchet-differentability with respect to the L∞ norm on the space of densities of Y,X
with respect to some dominating measure.
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Example 1 For the mean outcome ν = E[Y ], we get IF = Y −E[Y ] and ω = 1. For the variance
of outcomes ν = Var(Y ), we get IF = (Y − E[Y ])2 −Var(Y ) and ω ≈ 2(Y − E[Y ]). For the mean
of some power of the outcome, ν = E[Y γ/γ], we get IF = Y γ − E[Y γ ] and ω ≈ Y γ−1. And lastly,
for the between-group difference of average outcomes, ν = E[Y |A = 1] − E[Y |A = 0], we have
IF = Y ·

(
A

E[A] −
1−A

1−E[A]

)
− ν and ω = A

E[A] −
1−A

1−E[A] .

Utilitarian welfare Thus far, we have discussed welfare in terms of outcomes Y that are
observable in principle. This contrasts with the typical approach in welfare economics [11, 44],
where welfare is defined based on the unobserved utility of individuals. Unobserved utility can be
operationalized in terms of equivalent variation, that is, willingness to pay: what is the amount of
money Z that would leave an individual indifferent between receiving Z and no treatment (W = 0),
or receiving W = 1 but no money. Based on this notion of equivalent variation, social welfare can
then be defined as ν = E[(ω · Z) ·W ]. The welfare weights ω now measure the value assigned to a
marginal unit of money for a given person. Welfare weights reflect distributional preferences.

Tension between the decision-maker’s objective, fairness, and equality In the following
proposition, we characterize the effect of a marginal change dw(·) of the policy w(·) on the different
objectives, the decision-maker’s objective µ, the measure of fairness π, and statistics ν that might
measure inequality or social welfare. Conflicts between these three objectives can arise if l(x), p(X),
and n(x), as defined below, are not affine transformations of each other.

Proposition 1 (Marginal policy changes) Consider a family of assignment policies

w(x) = w∗(x) + ε · dw(x),

and denote by dµ, dπ, and dν the derivatives of µ (D ’s objective), π (the measure of fairness), and
ν (inequality or social welfare) with respect to ε. Suppose that ν is Fréchet-differentable with respect
to the L∞ norm on the space of densities of Y,X with respect to some dominating measure.

Then

dµ = E[dw(X) · l(X)],

dπ = E [dw(X) · p(X)] ,

dν = E[dw(X) · n(X)],

where

l(x) = E[M |X = x]− c, (14)

p(x) = E

[
(M − E[M |W = 1, A = 1]) · A

E[WA]

− (M − E[M |W = 1, A = 0]) · (1−A)

E[W (1−A)]

∣∣∣X = x

]
, (15)

n(x) = E
[
IF (Y 1, x)− IF (Y 0, x)|X = x

]
. (16)

Proof 1 The case of µ is immediate from the definition of µ. The case of ν follows from the
definition of Fréchet differentiability (cf. Section 20.2 in [63]), Lemma 1 in [34], and the arguments
in Section 3 of this paper. This leaves the case of π. Let us consider the first component of π,

E[M |W = 1, A = 1] = E

[
WMA

E[WA]

]
,
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and thus

dE[M |W = 1, A = 1] = E

[
dw(X) ·

(
MA

E[WA]
− E[WMA]

E[WA]2
·A
)]

= E

[
dw(X) · (M − E[M |W = 1, A = 1]) · A

E[WA]

]
The derivative of E[M |W = 1, A = 0] can be calculated similarly, and the claim follows.

Proposition 1 has a number of important consequences:
First, Proposition 1 provides the basis for analyzing the distributional impact of algorithms or

changes to algorithms, as part of an “algorithmic auditing” process, along the lines we demonstrated
in our empirical application in Section 6. We provide a step by step guide for such an algorithmic
auditing procedure in Section 7. Suppose that in our data the treatment W is plausibly exogenous
given the features X. Then n(x) can be estimated by regressing the influence function IF (Y,X)
(for some statistic ν) on W , controlling for X, using for instance a causal forest or some other
supervised learning method. The impact of switching from assignment algorithm w∗(x) to some
other algorithm w(x) is then (to first order) given by the average of dw(X) times n(X), over the
distribution of features X. This allows us to estimate the impact of the change of the algorithm on
inequality, welfare, or between group differences.

Second, Proposition 1 helps us elucidate the tension between conflicting objectives such as
profits, fairness, and equality or welfare, and to connect these to the notion of welfare weights.
Suppose for instance that π is negative and that for some feature value x we have that n(x) (for
some measure of welfare ν) is positive, while p(x) is negative. This tells us that increasing the
treatment probability w(x) at x is good for welfare and bad for fairness. We can thus understand
which parts of the feature space drive the tension between alternative objectives.

Third, Proposition 1 allows us to characterize the optimal assignment x → w(x) from the
decision-maker’s point of view, when constrained to fair allocations; this is done in Corollary 1,
below.

Fourth, Proposition 1 allows us to understand whose welfare a status-quo decision procedure
implicitly values, by deriving inverse welfare weights; this is done in Corollary 2 below. This insight
is again relevant for the practice of algorithmic auditing. For a related approach, see for instance
[8].

Let us now reconsider the problem of maximizing µ subject to the fairness constraint π = 0.
The solution to this problem is characterized in Corollary 1, drawing on Proposition 1.

Corollary 1 (Optimal policy under the fairness constraint) The solution to the problem of
maximizing D ’s objective µ subject to the fairness constraint π = 0 by choice of w(·) is given by

w(x) = 1(l(x) > λp(x)), (17)

for some constant λ, where we have chosen w(x) arbitrarily for values of x such that l(x) = λp(x),
and the equality holds with probability 1.

Proof 2 We are looking for a solution to

max
w(·)

µ =

∫
(m(x)− c)pX(x)dx subject to

π = E

[
MWA

E[WA]
− MW (1−A)

E[W (1−A)]

]
= 0 and

0 ≤ w(x) ≤ 1 ∀ x.
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The Lagrangian for the objective and the fairness constraint is given by L = µ+ λπ. Consider a
family of policies indexed by ε, w(x) = w∗(x) + ε · dw(x), as in Proposition 1. The solution to our
optimization problem has to satisfy the condition

∂L

ε
≤ 0

for all feasible changes dw, that is, for all dw such that

w∗(x) = 1⇒ dw(x) ≤ 0

w∗(x) = 0⇒ dw(x) ≥ 0.

By Proposition 1,
∂L

∂ε
=

∫
dw(x) (l(x) + λp(x)) pX(x)dx.

Suppose there is some set of values x of non-zero probability such that w∗(x) < 1 and l(x)+λp(x) > 0.
Setting dw(x) = 1 on this set would yield a contradiction. The claim follows.

4 Distribution of Power
Fairness provides a framework to critique the unequal treatment of individuals i with the same
merit, where merit is defined in terms of D ’s objective. The equality framework takes a broader
perspective by requiring that we consider the causal impact of an algorithm on the distribution of
relevant outcomes Y across individuals i more generally. Both of these perspectives, however, fail
to address another key component: who gets to set the objective function and why?

Here, we take a political economy perspective on algorithmic decision-making to provide a
framework for examining this question. Political economy is concerned with the ownership of
the means of production, as this brings both income and control rights [43]. In the setting of
algorithmic decision-making, this maps into two related questions: first, who owns and controls
data, and in particular data X about individuals? And second, who gets to pick the algorithms
W and objective functions µ that use this data? We are further concerned with the consequences
of this structure of ownership and control. The answers to these questions depend on contingent
historical developments and political choices, rather than natural necessity, as argued by [47] and
[69], for instance.

Implied welfare weights as a measure of power In the present work, we propose the following
framework for the political economy of algorithmic decision-making: we study actual decision
procedures w(·) by considering the welfare weights ω that would rationalize these procedures as
optimal. Put differently, we consider the dual problem of the problem of finding the optimal policy
for a given measure of social welfare.

Above, we discussed the effect of marginal policy changes on statistics ν that might measure
welfare. We argued that this effect can be written as E[dw(X) · E[ω · (Y 1 − Y 0)|X]], where ω
are “welfare weights,” measuring how much we care about a marginal increase of Y for a given
individual. The optimal policy problem of maximizing a linear (or linearized) objective ν = E[ω ·Y ]
net of the costs of treatment E[c ·W ] defines a mapping

(ωi)i → w∗(·) = argmax
w(·)∈W

E
[(
ω · (Y 1 − Y 0)− c

)
· w(X)

]
. (18)

We are now interested in the inverse mapping w∗(·)→ (ωi)i. This mapping gives the welfare weights
ω which would rationalize a given assignment algorithm w(·) as optimal. These welfare weights can
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be thought of as one measure of the effective social power of different individuals. The following
corollary of Proposition 1 characterizes this inverse mapping in the context of our binary treatment
setting. We characterize the implied welfare weights ω that would rationalize a given policy w(·).

Corollary 2 (Implied welfare weights) Suppose that welfare weights are a function of the
observable features X, and that there is again a cost of treatment c. A given assignment rule w(·)
is a solution to the problem

argmax
w(·)

E[w(X) · (ω(X) · E[Y 1 − Y 0|X]− c)] (19)

if and only if

w(x) = 1⇒ ω(X) > c/E[Y 1 − Y 0|X])

w(x) = 0⇒ ω(X) < c/E[Y 1 − Y 0|X])

w(x) ∈]0, 1[⇒ ω(X) = c/E[Y 1 − Y 0|X]). (20)

This follows immediately from the Karush–Kuhn–Tucker conditions for the constrained opti-
mization problem defining w∗(·).

5 Examples for the Tensions between Fairness and Equality
We return to the limitations of a fairness-based perspective formulated at the outset. We illustrate
each of these three limitations by providing examples where some change to the assignment algorithm
w(·) decreases un-fairness, while at the same time also increasing inequality and decreasing welfare.
In each of the examples, we consider the impact of an assignment rule w(ii), relative to some baseline
rule w(i). We contrast fairness as measured by “predictive parity” to inequality (and welfare) as
measured by either the variance of Y , or the average of Y γ , where γ < 1 measures the degree of
inequality aversion.

Legitimizing inequality based on merit We consider an improvement in the predictability
of merit. Suppose that initially (under scenario a), the decision-maker D only observes A, while
under scenario b they can perfectly predict (observe) M based on X. Assume that Y = W . Recall
that c denotes the cost of treatment, and assume that M is binary with P (M = 1|A = a) = pa,
where 0 < c < p1 < p0. Under these assumptions we get

W (i) = 1(E[M |A] > c) = 1, W (ii) = 1(E[M |X] > c) = M.

The policy a is unfair (in the sense of predictive parity), since for this policy

E[M |W (i) = 1, A = 1] = p1 < p0 = E[M |W (i) = 1, A = 0],

while the policy b is fair, since

E[M |W (ii) = 1, A = 1] = 1 = E[M |W (ii) = 1, A = 0].

The increase in predictability has thus improved fairness.
On the other hand, inequality of outcomes has also increased and welfare has decreased. By

assumption Y = W , so that Var(i)(Y ) = 0, Var(ii)(Y ) = E[M ](1 − E[M ]) > 0. Furthermore,
expected welfare E[Y γ ] has decreased, since E(i)[Y

γ ] = 1, E(ii)[Y
γ ] = E[M ] < 1.
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Narrow bracketing We consider a reform that abolishes affirmative action. Suppose that (M,A)
is uniformly distributed on {0, 1}2, thatM is perfectly observable to the decision-maker D , and that
0 < c < 1. Suppose further that under scenario a the decision-maker receives a reward (subsidy) of
1 for hiring members of the group A = 1, but that this reward is removed under scenario b. Under
these assumptions we get

W (i) = 1(M +A ≥ 1), W (ii) = M.

As before, the policy under scenario a is unfair, while the policy under scenario b is fair, since

E[M |W (i) = 1, A = 1] = .5 < 1 = E[M |W (i) = 1, A = 0],

while
E[M |W (ii) = 1, A = 1] = 1 = E[M |W (ii) = 1, A = 0].

Suppose now that potential outcomes are given by Y w = (1−A) + w. Under the two scenarios,
the outcome distributions are

YW
(i)

= 1 + 1(A = 0,M = 1) ∼ Cat(0, 3/4, 1/4), and

YW
(ii)

= (1−A) +M ∼ Cat(1/4, 1/2, 1/4),

where we use Cat to denote the categorical distribution on {0, . . . , 2} with probabilities specified
in brackets. This implies that Var(i)(Y ) = 3/16, Var(ii)(Y ) = 1/2, and E(i)[Y

γ ] = .75 + .25 · 2γ ,
E(ii)[Y

γ ] = .5 + .25 · 2γ . Thus, as before, the inequality of outcomes has increased and welfare has
decreased when we move from scenario a to scenario b.

Within-group inequality We finally consider a reform that mandates fairness to the decision-
maker. Suppose that P (A = 1) = .5, c = .7, and further that M |A = 1 ∼ Unif({0, 1, 2, 3}),
M |A = 0 ∼ Unif({1, 2}), We assume initially D is unconstrained, but the reform mandates
predictive parity, E[M |W (ii) = 1, A = 1] = E[M |W (ii) = 1, A = 0]. Then

W (i) = 1(M ≥ 1), W (ii) = 1(M +A ≥ 2).

Once again, the policy under scenario a is unfair, while the policy under scenario b is fair, since

E[M |W (i) = 1, A = 1] = 2 > 1.5 = E[M |W (i) = 1, A = 0], and

E[M |W (ii) = 1, A = 1] = 2 = E[M |W (ii) = 1, A = 0].

Assume that potential outcomes are given by Y w = M + w. Under the two scenarios, the
outcome distributions are

YW
(i)

= M + 1(M ≥ 1) ∼ Cat(1/8, 0, 3/8, 3/8, 1/8),

YW
(ii)

= M + 1(M +A ≥ 2) ∼ Cat(1/8, 2/8, 1/8, 3/8, 1/8),

where we use Cat to denote the categorical distribution on {0, . . . , 4} with probabilities specified in
brackets. This implies Var(i)(Y ) = 1.24, Var(ii)(Y ) = 1.61, and, choosing γ = .5, E(i)[Y

γ ] = 1.43,
E(ii)[Y

γ ] = 1.33. Again, the inequality of outcomes increases and welfare declines as we move from
scenario a to scenario b.
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Figure 1: Compas risk scores
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Notes: Distribution of Compas risk scores for black and white defendants (left) and distribution of estimated
average causal effects given observable features of the risk score on jail time, across defendants (right). Estimation of
causal effects was based on a causal forest; see text for details.

Table 1: Counter-factual scenarios

Black White All

Scenario (Score>4) Recid|(Score>4) Jail time (Score>4) Recid|(Score>4) Jail time Score>4 Mean JT IQR JT SD of log JT

Affirmative Action 0.49 0.67 49.12 0.47 0.55 36.90 0.48 44.23 23.8 1.81
Status quo 0.59 0.64 52.97 0.35 0.60 29.47 0.49 43.56 25.0 1.89
Perfect predictability 0.52 1.00 65.86 0.40 1.00 42.85 0.48 56.65 59.9 2.10

Notes: Comparison of the consequences of two counterfactual scenarios (affirmative action, perfect predictability) to
the status quo for Black, white, and all defendants.

6 Empirical Study
We illustrate our arguments using the Compas risk score data for recidivism. These data have
received much attention following Pro-Publica’s reporting on algorithmic discrimination in sentencing
[2]. We map our setup to the Compas data as follows. A denotes race (Black or white), W denotes
a risk score exceeding 4 (as in Pro-Publica’s analysis, based on the Compas classification as medium
or high risk), M denotes recidivism within two years, and Y denotes jail time. The predictive
features X that we consider include race, sex, age, juvenile counts of misdemeanors, felonies, and
other infractions, general prior counts, as well as charge degree.

We compare three counter-factual scenarios. (1) A counter-factual “affirmative action” scenario,
where race-specific adjustments are applied to the risk scores. We decrease the scores generated by
Compas by one unit for Black defendants, and increase them one unit for white defendants. (2)
The status-quo scenario, taking the original Compas scores as given. (3) A counter-factual “perfect
predictability” scenario, where scores are set to 10 (the maximum value) for those who actually
recidivated within 2 years. Scores are set to 1 (the minimum value) for all others.

For each of these scenarios, we impute corresponding values of W (i.e., a counter-factual score
bigger than 4), and counter-factual jail time Y . The latter is calculated based on a causal-forest
estimate [65] of the impact on Y of risk scores, conditional on the covariates in X. This relies on
the (strong) assumption of conditional exogeneity of risk-scores given X.

As can be seen in Table 1, fairness as measured by predictive parity improves when moving from
the affirmative action scenario to the status-quo, and is fully achieved in the perfect predictability
scenario. This follows because the difference in expected recidivism, conditional on having a score
bigger than 4, between Black and white defendants decreases as we go from one scenario to the
next.
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On the other hand, Table 1 also shows that inequality, both between and within racial groups,
increases as we go from one scenario to the next. The difference in mean jail time between Black
and white defendants increases from about 12 days to about 23 days. The interquartile range in the
distribution of counter-factual jail time increases from about 24 days to 60 days. And the standard
deviation of log jail time increases from 1.8 to 2.1.

7 A guide for algorithmic auditing using distributional de-
compositions

In this section, we provide a step by step guide to algorithmic auditing for distributional impacts.
The method we discuss here builds on our characterization of distributional impacts in Proposition
1. This method enables an auditor to estimate the causal impact of switching from treatment
assignment w∗(·) (the baseline) to a counterfactual treatment assignment w(·) on some statistic ν
of the distribution of outcomes Y . This approach is based on the framework introduced in Section
3.

Step 0: Normative choices Before any analysis can begin, a number of important normative
choices have to be made. First we need to determine the relevant outcomes Y for individuals’
welfare – income, education, jail time, and so on? Second, we need to decide on the relevant
measures of welfare or inequality ν. A number of choices were discussed in the paper. A good
default, allowing to represent the entire distribution, is to report the impact on a series of quantiles;
e.g. all percentiles. Third, the population of interest needs to be determined: do we care about
inequality only in our sample, or the population in the state, or the population in the entire country,
and so on? In many cases, the population of interest will be large relative to the sample treated by
the algorithm.

Step 1: Calculation of influence functions The next step is to calculate the influence function
for the measures of interest, at the appropriate baseline distribution of the population of interest.
Note that this requires specification of all items of Step 0.

This influence function is then evaluated at each of the observed outcomes in our sample, and
stored in a new variable. For example, for the variance of outcomes ν = Var(Y ), we impute
IF (yi) = (yi − E[Y ])2 − Var(Y ) for each observation in the sample, where E[Y ] and Var(Y ) are
evaluated for the population of interest. For the between-group difference of average outcomes,
ν = E[Y |A = 1]−E[Y |A = 0], we impute IF (yi, ai) = yi ·

(
ai
E[A] −

1−ai
1−E[A]

)
− ν, where again E[A]

and ν are evaluated for the population of interest. See [13] for further examples.

Step 2: Causal effect estimation The next step in the proposed analysis is to estimate the
conditional average treatment effect of W on IF (Y ) given the observed features X, that is, to
estimate

n(x) = E
[
IF (Y 1, x)− IF (Y 0, x)|X = x

]
, (21)

in the notation of Proposition 1.
Such causal estimation requires random variation of the treatment W conditional on X, that is,

conditional statistical independence

W ⊥ (Y 0, Y 1)|X. (22)

Conditional independence is ensured in experimental settings (e.g., data coming from A/B tests
or (contextual) bandits). More generally, independence might be a reasonable approximation if
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the space of features X is sufficiently rich, and X does not include any variables that are causally
“downstream” from W or Y .

Many estimators are available to estimate n(x) under the assumption of conditional independence;
in our application we have used the causal forest approach of [65]. After estimating the function
n(·), an estimated value of n(xi) is imputed for every observation i in the sample.

Step 3: Counterfactual assignment probabilities In order to evaluate the impact of an
algorithm w(·), we need to compare it to a baseline algorithm with assignment probabilities w∗(·).
In Step 3, we need to evaluate these assignment probabilities, that is, both w(xi) and w∗(xi) for all
i, and impute

∆w(xi) = w(xi)− w∗(xi) (23)

for all i in the sample.

Step 4: Evaluation of distributional impact The last step of our analysis then requires
putting the pieces together, and evaluating

∆̂ν = α · 1

n

∑
i

∆w(xi) · n(xi), (24)

where α is the share of the population of interest that is assigned treatment by the algorithm. ∆̂ν
is the estimated impact of switching from algorithm w∗(·) to algorithm w(·) on the measure ν of
inequality or welfare.

8 Conclusion
In this work, we articulate and discuss three limitations of fairness-based perspectives under
leading notions of fairness: namely, that they legitimize inequalities justified by merit, rather than
questioning the status quo; that they are narrowly bracketed and do not adequately engage with
the impact of algorithms on pre-existing inequalities; and that they do not consider within-group
inequalities, leading to intersectional concerns [4, 14, 27, 40, 42, 46, 51, 52]. To help alleviate these
limitations, we consider two alternative perspectives drawing on theories of justice and empirical
economics.

An inequality-centered perspective is pertinent in settings where we presume that inequalities
of social outcomes are socially created, and the same holds for various forms of “merit” (marginal
productivity, recidivism, etc). Here, any decision system can be viewed as a step in the causal
pathway of reproducing or reducing these inequalities. An approach intending to minimize harm on
disadvantaged groups therefore does better to consider the effect of any particular decision system
(whether algorithmic or human) on inequality as a whole, rather than aiming to solely optimize for
a fixed fairness notion within the algorithm. The latter also risks normatively privileging between
group equality to within group equality (cf. for instance Black feminist critiques of second wave
feminism [14, 27, 42]).

A perspective focused on the distribution of power compels us to consider the design of the
algorithms themselves: Don’t just ask how the algorithm treats different people differently, but also
who gets to do the treating. By taking a political economy perspective, we examine what implicit
distribution of social power justifies the current choice of objectives. Such a question foregrounds
how power gets allocated, and what is the process that leads some groups to have more control
over data in decision making processes.

These alternative perspectives focused on inequality and power are not intended to entirely
solve the above fairness concerns, but rather to elucidate them and bring to the forefront concerns
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that haven’t been adequately considered in the literature thus far. In doing so, we add to a recent
line of work aiming to broaden discussions on the social impact of algorithmic decision-making.
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A Balance for the positive class
We introduced predictive parity as a definition of fairness above. In Proposition 1 we then
characterized the impact of marginal policy changes on the measure π of predictive parity. An
alternative, related, notion of fairness is balance for the positive class, which requires that π̃ = 0,
where

π̃ = E[W |M = 1, A = 1]− E[W |M = 1, A = 0]

= E

[
W ·

(
MA

E[MA]
− M(1−A)

E[M(1−A)]

)]
. (25)

In analogy to Observation 1, the following is immediate.

Observation 2 Suppose that (i) m(X) = M (perfect predictability) and (ii) w∗(x) = 1(m(X) > c)
(unconstrained maximization of D ’s objective µ). Then w∗(x) satisfies balance for the positive class,
i.e., π̃ = 0.

As in Proposition 1, we can also characterize the impact of marginal policy changes on π̃ as
dπ = E [dw(X) · p̃(X)], where

p̃(x) = E

[(
MA

E[MA]
− M(1−A)

E[M(1−A)]

) ∣∣∣X = x

]
=

(
E[MA|X = x]

E[MA]
− E[M(1−A)|X = x]

E[M(1−A)]

)
. (26)

The proof is immediate.

B An introduction to influence functions and welfare weights
In this section we provide a self-contained introduction to and review of influence functions and
welfare weights. Influence functions are useful in various subfields of statistics. Welfare weights are
useful, in particular, in public finance and optimal tax theory. Both welfare weights and influence
functions correspond to definitions of derivatives, that is, local linear approximations to (non-linear)
functionals of interest.

Let P denote a probability measure corresponding to the distribution of some real valued
random variable Y , possibly jointly with additional features X. We are interested in a statistic ν of
P , where ν might for instance correspond to some measure of inequality or of social welfare. Our
goal in the following is to provide a local linear approximation to ν in a vicinity of some baseline
distribution P ∗.

Discrete finite distributions We first consider the case of discrete distributions with finite
support, where the definition of influence functions and welfare weights is elementary. Let δy denote
the measure with unit mass at the point y, and assume that

P =

k∑
i=1

piδyi . (27)

Denote p = (p1, . . . , pk) as well as y = (y1, . . . , yk). Then we can write, with a slight abuse of
notation

ν(P ) = ν(p,y). (28)
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We assume that ν is a differentiable function of all of its arguments.

To give an example motivating the following definitions, suppose hat P describes a distribution
of income Y across different types of people i. Then the welfare weights ωi measure how much ν
would change if the income of people of type i was marginally increased, while the influence func-
tion IFi measures how much ν would change if the share of people of type i was marginally increased.

Formally, the welfare weights ωi are given by the derivative of ν with respect to the vector of
outcome values y, evaluated at the baseline distribution P ∗,

ωi =
∂

∂yi
ν(p∗,y)

∣∣
y=y∗ . (29)

The influence function IFi is given by the derivative of ν with respect to the vector of probabilities
p, evaluated at the baseline distribution P ∗. A minor complication here is that the statistic ν is, in
general, only defined for probability vectors p, which satisfy

∑
i pi = 1. The influence function at yi

is therefore defined as the derivative with respect to ε of ν evaluated at P ∗ + ε · (δyi −P ∗), that is,

IFi =
∂

∂ε
ν(p∗ + ε · (ei − p∗); y)

∣∣
ε=0

, (30)

where ei is the ith unit vector.

By the definition of differentiability of ν, we can now locally approximate ν in the following two
ways:

ν(p∗; y) = ν(p∗; y∗) +
∑
i

ωi · (yi − y∗i ) + o(‖y − y∗‖), (31)

ν(p; y∗) = ν(p∗; y∗) +
∑
i

IFi · (pi − p∗i ) + o(‖p− p∗‖). (32)

Influence functions for general distributions We have introduced influence functions and
welfare weights for discrete distributions. These concepts extend to functionals ν of general
probability measures P that describe some joint distribution of Y and X. In particular, suppose
that ν is Fréchet differentiable at P ∗, in the sense that

lim
P→P∗

‖(ν(P )− ν(P ∗))−Dν(P − P ∗)‖
‖P − P ∗‖

= 0, (33)

where Dν is a continuous linear functional with respect to the L2 norm on the space of densities
which is defined by ‖P‖ =

√∫
(dP/dP ∗)2dP ∗. The limit has to equal 0 for all sequences of

probability measures P converging to P ∗.
Recall that L2 is a Hilbert space, i.e., a vector space equipped with an inner product 〈., .〉. By

the Riesz representation theorem, we know that for any continuous linear functional D : L2 → R
there exists an element IF ∈ L2, such that

D(p) = 〈IF,p〉 = Ep[IF ] (34)

for all p ∈ L2. The vector IF is the dual representation of the linear functional D.9
Combining equations (33) and (34), and noting that by construction EP∗ [IF ] = 0, we see that,

again
ν(P ) = ν(P ∗) + EP [IF ] + o(‖P − P ∗‖). (35)

9This argument could be generalized further by considering weaker notions of differentiability, such as Gâteaux
differentiability, and more general Lp spaces, which have dual space Lq where 1/p+ 1/q = 1.
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Uses of influence functions Influence functions play a role in a number of different contexts in
econometrics and statistics. In asymptotic distribution theory for estimators, and the derivation
of efficiency bounds, one can show that any “regular” estimator ν̂ of the just-identified parameter
ν(P ) is asymptotically equivalent to a linearized plug-in estimator, ν̂ ≈ ν(P ∗) + En[IF (X)]. This
implies the asymptotic efficiency bound nVar(ν̂)→ Var(IF (X)). See for instance [62], in particular
chapter 3, and [63], chapter 20.

In robust statistics, since estimators can be approximated by ν̂ ≈ ν(P ∗) + En[IF (X)], we
get that the value of ν̂ can be dominated by a single outlier, even in large samples, unless IF is
bounded. See for instance [? ].

In the econometrics of partial identification, nonparametric models with endogeneity tend to lead
to representations of potential outcome distributions of the form P (Y d) = αP 1(Y )+(1−α)P 2(Y d),
where draws from P 1(Y ) are observable, while the data are uninformative about P 2(Y d). A
linear approximation to ν(P (Y d)) then implies ν(P (Y d)) − ν(P ∗) ≈ αDν(P 1(Y ) − P ∗) + (1 −
α)Dν(P 2(Y d)− P ∗). The first term here is identified, the second term can be bounded if and only
if Dν is bounded on the admissible counterfactual distributions P 2(Y d) - the same condition as in
robust statistics. See for instance [? ], section 3.

Lastly, the literature on distributional decompositions, considers the context closest to the
present paper. In labor economics, we are often interested in counterfactual distributions of the
form P (Y ) =

∫
P 1(Y |X)dP 2(X), where we observe samples from the distributions 1 and 2. In

order to estimate ν(P ), we can again use the approximation ν(P ) ≈ ν(P 2) +
∫
IF (Y )dP (Y ) =

ν(P 2) +
∫
IF (Y )dP 1(Y |X)dP 2(X) = ν(P 2) + E2[E1[IF (Y )|X]]. The conditional expectation

E1[IF (Y )|X] can be estimated using regression methods, the expectation w.r.t. X can be estimated
using the P 2 sample average of predicted values from the regression. See for instance [17].

Uses of welfare weights Welfare weights are a commonly used tool in public finance and the
theory of optimal taxation; see for instance [57], [11], and [58]. The typical problem of optimal
taxation is to find a maximizer of

ν =
∑
i

ωi · ui, (36)

where ui is a money-metric measure of individual utility (“equivalent variation”), and ωi is the
social value assigned to a marginal unit of money for individual i. As noted above, this functional
form for ν can be thought of as a local linear approximation to a more general differentiable social
welfare function ν.

Typically, ωi is smaller for those with higher income, reflecting a preference for redistribution.
The problem of maximizing ν is subject to a number of constraints, in particular informational
constraints, which depend on causal parameters (behavioral responses) that have to be determined
empirically. A key insight that simplifies this optimization problem is the envelope theorem, which
leverages the assumptions that individuals maximize their own welfare.
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